基于DQN的快速避障路径规划

### DQN算法在Python中的路径规划实现 #### 使用DQN进行路径规划的关键概念 深度Q网络(DQN)是一种强化学习方法,通过神经网络近似动作价值函数来解决决策问题。对于路径规划任务而言,环境可以被建模成网格世界,在该环境中智能体需找到从起点到终点的最佳路线[^1]。 #### 实现框架选择 为了简化开发过程并提高效率,推荐采用成熟的库如TensorFlow或PyTorch作为基础工具包构建模型。此外,RL-Glue提供了多种编程语言的支持接口,可用于连接不同的组件,但针对特定应用如路径规划,直接利用高级机器学习平台会更加方便快捷[^3]。 #### 示例代码展示 下面给出一段基于PyTorch的简单版DQN用于二维平面内移动机器人路径寻优的基础结构: ```python import torch import random from collections import namedtuple, deque class DQN(torch.nn.Module): def __init__(self, input_dim, output_dim): super(DQN, self).__init__() self.fc = torch.nn.Sequential( torch.nn.Linear(input_dim, 64), torch.nn.ReLU(), torch.nn.Linear(64, output_dim) ) def forward(self, x): return self.fc(x) Transition = namedtuple('Transition', ('state', 'action', 'next_state', 'reward')) class ReplayMemory(object): def __init__(self, capacity): self.memory = deque([], maxlen=capacity) def push(self, *args): """Save a transition""" self.memory.append(Transition(*args)) def sample(self, batch_size): return random.sample(self.memory, batch_size) def __len__(self): return len(self.memory) def select_action(state, policy_net, n_actions, epsilon_start=0.9, eps_end=0.05, decay=200): global steps_done sample = random.random() eps_threshold = eps_end + (epsilon_start - eps_end) * \ math.exp(-1. * steps_done / decay) steps_done += 1 if sample > eps_threshold: with torch.no_grad(): # t.max(1) will return largest column value of each row. # second column on max result is index of where max element was # found, so we pick action with the larger expected reward. return policy_net(state).max(1)[1].view(1, 1) else: return torch.tensor([[random.randrange(n_actions)]], dtype=torch.long) # 假设有一个简单的迷宫类 MazeEnv 来表示环境... env = MazeEnv() policy_net = DQN(env.observation_space.shape[0], env.action_space.n).to(device) target_net = DQN(env.observation_space.shape[0], env.action_space.n).to(device) target_net.load_state_dict(policy_net.state_dict()) target_net.eval() optimizer = optim.Adam(policy_net.parameters(), lr=LR) memory = ReplayMemory(MEMORY_CAPACITY) steps_done = 0 episode_durations = [] for i_episode in range(num_episodes): state = env.reset() for t in count(): action = select_action(state, policy_net, env.action_space.n) next_state, reward, done, _ = env.step(action.item()) memory.push(state, action, next_state, reward) optimize_model(memory, policy_net, target_net, optimizer) if done: episode_durations.append(t + 1) break state = next_state update_target_network(target_net, policy_net, UPDATE_TARGET_FREQUENCY) ``` 此段代码展示了如何定义一个基本的DQN架构以及训练循环的一部分逻辑。实际项目中还需要考虑更多细节,比如状态空间的设计、奖励设计等具体因素都会影响最终效果[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Coder_by

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值