import keras import numpy as np import matplotlib.pyplot as plt #Sequential 按顺序构成的模型 from keras.models import Sequential#Sequential是模型结构,输入层,隐藏层,输出层 #Dense 全连接层 from keras.layers import Dense #使用numpy生成100个随机点 x_data=np.random.rand(100) noise=np.random.normal(0,0.01,x_data.shape)#生成和x_data形状一样的噪声 y_data=x_data*0.1+0.2+noise #显示随机点 #plt.scatter(x_data,y_data) #plt.show() #构建一个顺序模型 model=Sequential() #在模型中添加一个全连接层 model.add(Dense(units=1,input_dim=1))#units是输出维度,输出y,input_dim是输入维度,输入x model.compile(optimizer='sgd',loss='mse')#编译这个模型,sgd是随机梯度下降法,优化器.mse是均方误差 #训练模型 for step in range(3001): #每次训练一个批次 cost=model.train_on_batch(x_data,y_data)#代价函数的值,其实就是loss #每500个batch打印一次cost值 if step %500==0: print('cost:',cost) #打印权值和偏置值 W,b=model.layers[0].get_weights()#线性回归,只有一层 print('W:',W,'b:',b) #x_dat
keras线性回归,实例
最新推荐文章于 2023-06-08 23:42:18 发布
这篇博客展示了如何利用TensorFlow后端的Keras进行线性回归的实践。在训练过程中,可以看到损失(cost)从1.2237755逐渐下降到0.00012540948,最终得到了权重(W)和偏置(b)的值。
摘要由CSDN通过智能技术生成