PSO优化MLP神经网络分类预测

PSO优化MLP神经网络分类预测

# -*- coding: utf-8 -*-
import torch
import numpy as np
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt
import pandas as pd

#加载数据
def load_and_process_data():
    data = pd.read_csv('data/data.csv').values
    X = data[:, :3]
    y = data[:, -1]

    # 数据标准化
    scaler = StandardScaler()
    X = scaler.fit_transform(X)

    # 划分训练集和验证集
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)



    return X_train_tensor, y_train_tensor, X_test_tensor, y_test_tensor

# 定义模型
class Classifier(torch.nn.Module):
    def __init__(self, input_dim, output_dim, num_hidden_units):
        super(Classifier, self).__init__()
        self.linear1 = torch.nn.Linear(input_dim, num_hidden_units)
        self.linear2 = torch.nn.Linear(num_hidden_units, output_
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

机器小番茄

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值