python MLP回归预测


import numpy as np
import pandas as pd
from sklearn.neural_network import MLPRegressor
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei']


# 读取数据 // 数据获取 https://mbd.pub/o/tomato/work
# 公众号:机器小番茄
data = pd.read_excel('data.xlsx').values
num=100
# 划分特征和目标变量
X = data[:num, :-1]  #
y = data[:num, -1]   #

# 创建并训练MLP模型
mlp = MLPRegressor(hidden_layer_sizes=(100, 50), max_iter=500)
mlp.fit(X, y)

y_pred = mlp.predict(X)
print("实际值:",np.round(y,3))
print("预测值:",np.round(y_pred,3))

# 创建并训练MLP模型
mlp = MLPRegressor(hidden_layer_sizes=(100, 50), max_iter=100)
mlp.fit(X, y)

# 获取损失值随迭代次数的变化
loss_values = mlp.loss_curve_

# 绘制迭代曲线
plt.figure()
plt.plot(range(1, len(loss_values) + 1), loss_values, marker='o')
plt.xlabel('迭代次数')
plt.ylabel('损失值')
plt.title('BP迭代曲线')
# plt.ylim(0,3000)
plt.show()

plt.figure()
plt.plot(y, label='实际值', color='blue',marker="o")
plt.plot( y_pred, label='预测值', color='red',marker="o")
plt.xlabel('x')
plt.ylabel('y')

plt.legend()
plt.title('实际值和预测值')
plt.show()


# 预测未来的值
future_predictions = mlp.predict(data[num-1:, :-1])
print("历史值:",np.round(y, 3))
print("未来值:",np.round(future_predictions, 3))
# 绘制历史值和预测值
plt.figure()
plt.plot(range(len(y)), y, label='历史值', color='blue',marker="o")
plt.plot(range(len(y), len(y) + len(future_predictions), 1), future_predictions, label='预测值', color='red',marker="o")
plt.xlabel('x')
plt.ylabel('y')
plt.legend()

plt.title('历史和预测值')
plt.show()

迭代曲线: 

预测值与实际值

预测无标签数据:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

机器小番茄

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值