Python实现人工神经网络回归模型(MLPRegressor算法)并基于网格搜索(GridSearchCV)进行优化项目实战

376 篇文章 273 订阅

说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。

1.项目背景

经济广告是指以营利为目的的广告,通常是商业广告,它是为推销商品或提供服务,以付费方式通过广告媒体向消费者或用户传播商品或服务信息的手段。商品广告就是这样的经济广告。为促进产品的销售,厂商经常会通过多个渠道投放广告。本项目将根据某公司在电视、广播和报纸上的广告投放数据预测广告收益,作为公司制定广告策略的重要参考依据。

本项目通过通过人工神经网络回归模型来进行广告投放数据的预测,并通过网格搜索算法进行模型的调优,使模型达到最优的效果。

2.数据获取

本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:

数据详情如下(部分展示):

3.数据预处理

3.1 用Pandas工具查看数据

使用Pandas工具的head()方法查看前五行数据:

关键代码:

3.2数据缺失查看

使用Pandas工具的info()方法查看数据信息:

从上图可以看到,总共有5个变量,数据中无缺失值,共1000条数据。

关键代码:

3.3数据描述性统计

通过Pandas工具的describe()方法来查看数据的平均值、标准差、最小值、分位数、最大值。

关键代码如下:

4.探索性数据分析

4.1 收益的趋势图

用Matplotlib工具的plot()方法绘制折线图:

4.2 收益分布直方图

用Matplotlib工具的hist()方法绘制直方图:

从上图可以看出,收益主要分布在150~250之间。

4.3 电视广告投放方式与收益的散点图与拟合线

用seaborn工具的lmplot ()方法绘制散点图与拟合线:

从上图可以看出,电视广告投入方式和收益呈现很好的线性关系。

4.4 相关性分析

从上图中可以看到,数值越大相关性越强,正值是正相关、负值是负相关。

5.特征工程

5.1 建立特征数据和标签数据

关键代码如下:

 

5.2 数据集拆分

通过train_test_split()方法按照80%训练集、20%测试集进行划分,关键代码如下:

6.构建人工神经网络回归模型

主要使用MLPRegressor算法和网格搜索优化算法,用于目标回归。

6.1默认参数构建模型

 

6.2 通过网格搜索寻找的最优参数

关键代码:

 最优参数:

6.3 最优参数值构建模型

 

7.模型评估

7.1评估指标及结果

评估指标主要包括可解释方差值、平均绝对误差、均方误差、R方值等等。

从上表可以看出,R方为0.9412 较默认参数优有较大的提升;可解释方差值为0.6777 较默认参数优有较大的提升,优化后的回归模型效果良好。

关键代码如下:

7.2 真实值与预测值对比图

 

从上图可以看出真实值和预测值波动基本一致,模型拟合效果良好。

8.结论与展望

综上所述,本文采用了人工神经网络回归算法的来构建回归模型,通过网格搜索算法找到最优的隐藏层数量和神经元数量,最终证明了我们提出的模型效果很好,可用于实际生产中进行预测,使企业发展得更好,利润更多。

# 用Pandas工具查看数据
print(data.head())
print('******************************')

# 本次机器学习项目实战所需的资料,项目资源如下:

链接:https://pan.baidu.com/s/1maF5nbZai78Tqv3K_ymeQw 
提取码:hey5







# 数据缺失值统计
print(data.info())
print('******************************')

# 描述性统计分析
print(data.describe())
print('******************************')

# 收益的趋势图
plt.rcParams['font.sans-serif'] = ['SimHei']  # 指定默认字体
plt.rcParams['axes.unicode_minus'] = False  # 解决保存图像是负号'-'显示为方块的问题
plt.plot(data['日期'], data['收益'], color='green', label='收益')  # 绘制折线图
plt.xlabel("日期")
plt.ylabel("收益")
plt.title('收益的趋势图')
plt.legend(loc='upper right')  # 给图加上图例
plt.show()
  • 7
    点赞
  • 115
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
下面是一个使用GridSearchCV调参的MLPRegressor算法Python实现: ```python from sklearn.neural_network import MLPRegressor from sklearn.model_selection import GridSearchCV from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error import pandas as pd # 读取数据 data = pd.read_csv('data.csv') # 划分数据集和测试集 X_train, X_test, y_train, y_test = train_test_split(data.iloc[:, :-1], data.iloc[:, -1], test_size=0.2, random_state=42) # 设置参数范围 param_grid = {'hidden_layer_sizes': [(50, 50, 50), (50, 100, 50), (100,)], 'activation': ['tanh', 'relu'], 'solver': ['sgd', 'adam'], 'alpha': [0.0001, 0.05], 'learning_rate': ['constant', 'adaptive']} # 构建模型 mlp = MLPRegressor(random_state=42) # 使用GridSearchCV进行参数调优 grid_search = GridSearchCV(mlp, param_grid=param_grid, cv=5, scoring='neg_mean_squared_error') grid_search.fit(X_train, y_train) # 输出最优参数 print("Best parameters:{}".format(grid_search.best_params_)) # 使用最优参数构建模型 mlp = MLPRegressor(hidden_layer_sizes=grid_search.best_params_['hidden_layer_sizes'], activation=grid_search.best_params_['activation'], solver=grid_search.best_params_['solver'], alpha=grid_search.best_params_['alpha'], learning_rate=grid_search.best_params_['learning_rate'], random_state=42) # 训练模型 mlp.fit(X_train, y_train) # 预测模型 y_pred = mlp.predict(X_test) # 输出结果 print("RMSE: {}".format(np.sqrt(mean_squared_error(y_test, y_pred)))) ``` 在上述代码中,首先我们读取了数据并将其划分为训练集和测试集。然后,我们设置了需要调优的参数范围,并且使用GridSearchCV进行参数调优。在调优过程中,我们使用了5折交叉验证,并使用均方误差作为评估指标。最后,我们使用最优参数构建模型,并训练和预测模型。最终,输出了均方根误差作为评估结果。 需要注意的是,这里的数据集需要自行准备。同时,该代码只是一个示例,实际使用时可能需要根据数据集的情况进行适当的调整。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

胖哥真不错

您的鼓励,将是我最大的坚持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值