basic conception of minterm and maxterm

3.5  逻辑函数的标准形式

    利用代数法可使逻辑函数变成较简单的形式。但这种方法要求熟练掌握逻辑代数的基本定律,而且需要一些技巧,特别是经代数法化简后得到的逻辑表达式是否是最简式较难掌握,这就给使用逻辑函数带来一定的困难,使用卡诺图法可以比较简便地得到最简的逻辑表达式。

    3.5.1  逻辑函数的最小项表达式
    1.逻辑函数的最小项
    根据逻辑函数的概念,一个逻辑函数的表达式不是惟一的,例如

    在最后一个函数的表达式中,我们可以看到:
    (1)每个乘积项都包含了全部输入变量
    (2)每个乘积项中的输入变量可以是原变量,或者反变量;
    (3)同一输入变量的原变量和反变量不同时出现在同一乘积项中。
这样的乘积项我们称为最小项。
    为什么称它为最小项呢?因为对于n个输入变量,变量的取值组合有2n个,在这2n个组合中,只能有1种,使得乘积项为1,其他的组合都会使乘积项为0。所以,最小项是输入变量组合中,取值为1只有一种可能的乘积项。
    全部由最小项相加构成的与—或表达式称为最小项表达式,这是与—或表达式的标准表达式,又称为标准与—或表达式,或者标准积之和式。
    对n个变量的函数,共有2n种不同的取值组合,因此,共有2n种最小项。
    3变量→8种取值组合→8种最小项
    4变量→16种取值组合→16种最小项
    3变量:

000-001-
002-003-
004-005-
006-007-

    为简化表示,通常每个变量取值组合用一个号码表示,通常用m表示为最小项,用二进制数所对应的十进制数作为m的下标。
    如 =100,记作m4
        =1011,记作m11
    那么  
简写成 F(A,B,C)=m7+m6+m4+m2 
或者简写成 F(A,B,C)=∑m(2,4,6,7)
    再如 
简写成 F(A,B,C,D)=m1+m5+m9+m12
或 F(A,B,C,D)=∑m(1,5,9,12)
    2.逻辑函数的最小项表达式
    利用逻辑代数的基本公式,可以把任一个逻辑函数化成一种典型的表达式,这种典型的表达式是一组最小项之和,称为最小项表达式。下面举例说明把逻辑表达式展开为最小项表达式的方法。例如,要将L(A,B,C)=AB+AC化成最小项表达式,这时可利用的基本运算关系,将逻辑函数中的每一项都化成包含所有变量ABC的项,例如:

此式是由四个最小项构成的,它是一组最小项之和,因此是一个最小项表达式。上式中各最小项可分别表示为m1m3,m6,m7,所以可写为
                                 LA,B,C)=
m
1m3m6m7 
为了简化,常用最小项下标编号来代表最小项,故上式又可改写为

L(A,B,C)=∑m(1,3,6,7)。

又如,要将化成最小项表达式,可经下列几步:
    (1)多次利用摩根定律去掉非号,直至最后得到一个只在单个变量上有非号的表达式。

    (2)利用分配律除去括号,直至得到一个与或表达式
    (3)在所得式子中,有一项AB不是最小项(缺少变量C),则用(C+C)乘此项。

    由此可见,任一个逻辑函数都可化成唯一的最小项表达式。

    3.5.2 逻辑函数的或-与表达式
    1.最大项
    (1)每一个和项中包含全部变量;
    (2)和项中的变量可以原变量形式出现,也可以反变量形式出现;
    (3)原、反变量不能同时出现在同一个和项中。
    这样的和项称为最大项。因为对于n个输入变量,其取值组合有2n种,使最大项取值为1的组合有2n-1种,只有1种取值组合使得最大项取值为0。
    最大项也可以用Mi表示,其中i为最大项的序号,例
                             A+B+CM0(A,B,C同时为0→A+B+C=0)

                             A+B+CM3 
    2.标准或-与表达式
    全部由最大项的乘积构成的表达式称为标准或-与表达式,或称为标准和之积式。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值