3.5 逻辑函数的标准形式
利用代数法可使逻辑函数变成较简单的形式。但这种方法要求熟练掌握逻辑代数的基本定律,而且需要一些技巧,特别是经代数法化简后得到的逻辑表达式是否是最简式较难掌握,这就给使用逻辑函数带来一定的困难,使用卡诺图法可以比较简便地得到最简的逻辑表达式。
3.5.1 逻辑函数的最小项表达式
1.逻辑函数的最小项
根据逻辑函数的概念,一个逻辑函数的表达式不是惟一的,例如
在最后一个函数的表达式中,我们可以看到:
(1)每个乘积项都包含了全部输入变量;
(2)每个乘积项中的输入变量可以是原变量,或者反变量;
(3)同一输入变量的原变量和反变量不同时出现在同一乘积项中。
这样的乘积项我们称为最小项。
为什么称它为最小项呢?因为对于n个输入变量,变量的取值组合有2n个,在这2n个组合中,只能有1种,使得乘积项为1,其他的组合都会使乘积项为0。所以,最小项是输入变量组合中,取值为1只有一种可能的乘积项。
全部由最小项相加构成的与—或表达式称为最小项表达式,这是与—或表达式的标准表达式,又称为标准与—或表达式,或者标准积之和式。
对n个变量的函数,共有2n种不同的取值组合,因此,共有2n种最小项。
3变量→8种取值组合→8种最小项
4变量→16种取值组合→16种最小项
3变量:
000- | 001- |
002- | 003- |
004- | 005- |
006- | 007- |
为简化表示,通常每个变量取值组合用一个号码表示,通常用m表示为最小项,用二进制数所对应的十进制数作为m的下标。
如 =100,记作m4
=1011,记作m11
那么
简写成 F(A,B,C)=m7+m6+m4+m2
或者简写成 F(A,B,C)=∑m(2,4,6,7)
再如
简写成 F(A,B,C,D)=m1+m5+m9+m12
或 F(A,B,C,D)=∑m(1,5,9,12)
2.逻辑函数的最小项表达式
利用逻辑代数的基本公式,可以把任一个逻辑函数化成一种典型的表达式,这种典型的表达式是一组最小项之和,称为最小项表达式。下面举例说明把逻辑表达式展开为最小项表达式的方法。例如,要将L(A,B,C)=AB+AC化成最小项表达式,这时可利用的基本运算关系,将逻辑函数中的每一项都化成包含所有变量A、B、C的项,例如:
此式是由四个最小项构成的,它是一组最小项之和,因此是一个最小项表达式。上式中各最小项可分别表示为m1,m3,m6,m7,所以可写为
L(A,B,C)=m1+m3+m6+m7
为了简化,常用最小项下标编号来代表最小项,故上式又可改写为
L(A,B,C)=∑m(1,3,6,7)。
|
又如,要将化成最小项表达式,可经下列几步:
(1)多次利用摩根定律去掉非号,直至最后得到一个只在单个变量上有非号的表达式。
(2)利用分配律除去括号,直至得到一个与或表达式
(3)在所得式子中,有一项AB不是最小项(缺少变量C),则用(C+C)乘此项。
由此可见,任一个逻辑函数都可化成唯一的最小项表达式。
3.5.2 逻辑函数的或-与表达式
1.最大项
(1)每一个和项中包含全部变量;
(2)和项中的变量可以原变量形式出现,也可以反变量形式出现;
(3)原、反变量不能同时出现在同一个和项中。
这样的和项称为最大项。因为对于n个输入变量,其取值组合有2n种,使最大项取值为1的组合有2n-1种,只有1种取值组合使得最大项取值为0。
最大项也可以用Mi表示,其中i为最大项的序号,例
A+B+C-M0(A,B,C同时为0→A+B+C=0)
A+B+C-M3
2.标准或-与表达式
全部由最大项的乘积构成的表达式称为标准或-与表达式,或称为标准和之积式。