数字逻辑:布尔代数的运用之最大最小项

本文介绍了组合电路的设计方法,包括如何根据真值表转换为逻辑表达式。主要探讨了与或式和或与式的转换,并详细阐述了最小项和最大项的概念及其特点。通过最小项和最大项的编号,可以快速地将真值表转换为逻辑电路。此外,还提到了无关项在逻辑表达式中的角色。理解这些基本概念对于电路设计至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

组合电路一般是怎么设计的呢?:

有的时候可以不用真值表,直接根据语句转换。但适用范围较小。

真值表很好画,那怎么转换成逻辑表达式呢?:

与或式: 

可以这样想:既然中间的主要链接式是或,1对或影响大,就关注1。接下来压力来到了与这一边,与的话3个都要是1,那么就要妙用非了。 

或与式:

 道理同上。

最后的来的式子可以化简,然后变成逻辑电路。

最大项,最小项(maxterm,minterm)

定义:可以看到,全部积起来就是最小项(因为这样一般更小);全部合起来就是最大项。

元素可以是原变量,也可以是反变量。

最小,最大项的特点:

最小,最大项的编号就是“这是唯一可以使结果等于1\0的输入”。 

同时,这种唯一的输入也唯一的对应一种最小/大项,换了其他项就要变成0\1了。

一些性质:

最小项的反是最大项, 最大项的反是最小项:

注意:反对应的项编号是与其相对应的。毕竟,“唯一输入使结果为1”反过来就是“唯一输入使结果为0”

全部最小项的和是1,全部最大项的积是0.

一部分最小项的和取反是其他的最小项的和

注意:不管ABC是什么,都只有一个最小项会是1,一个最大项是0.就是自己的编号。

标准与或式,或与式还记得吗?现在可以辨识为最小,最大项之和了。

 

最大项的:

以最小项为例,这个书写过程实际上是先找到1的项。刚刚说过,每个最小项只有一个可以使输出为1的输入,一种输入也只能使一个最小项为1,那么这个输入当然就会有一个最小项与其对应,之前的结果也是如此。输入可以看成2进制,刚刚也说过输入就是编号,于是就可以直接写出对应的最小项。最大项同理。

这样,用真值表可以快速地写出其对应的逻辑表达式了。

讲完了最小,最大项,还有一个无关项。

 最小项是m,最大项是M,无关项是d/D,和最小项在一起时是d,最大项在一起是D.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值