1. VITON: Virtual Try-On Network (2017)
-
论文: VITON: An Image-based Virtual Try-on Network (CVPR 2018)
-
核心方法:
使用两个阶段:-
形变模块:将目标服装(Clothing)变形以匹配人体姿态。
-
合成模块:将变形后的服装与人体图像融合。
-
-
优点:
-
首次实现无需3D建模的端到端虚拟试衣。
-
保留服装纹理细节(如花纹)。
-
-
缺点:
-
对复杂姿态(如交叉手臂)的形变效果差。
-
无法处理半透明或紧身衣物。
-
2. CP-VTON (Clothing-Preserving VTON) (2018)
-
论文: Toward Characteristic-Preserving Image-based Virtual Try-On Network (ECCV 2018)
-
改进点:
-
引入几何匹配模块(TPS变换)优化服装形变。
-
通过掩码生成保留人体未被遮挡部分(如手臂)。
-
-
优点:
-
比VITON生成更自然的褶皱效果。
-
支持宽松服装的试穿。
-
-
缺点:
-
仍依赖粗糙的人体解析(如分割误差会影响结果)。
-
3. ClothFlow (2019)
-
论文: ClothFlow: A Flow-based Model for Clothed Person Generation (ICCV 2019)
-
核心方法:
使用光流估计(Optical Flow)预测服装到人体的形变,再通过GAN生成细节。 -
优点:
-
对动态服装(如飘动的裙子)效果更好。
-
生成高分辨率(256×256)图像。
-
-
缺点:
-
计算成本高,需预计算光流。
-
对快速运动模糊的处理不佳。
-
4. ACGPN (2020)
-
论文: Towards Photo-Realistic Virtual Try-On by Adaptively Generating Preserving Image Content (CVPR 2020)
-
核心方法:
-
结合语义分割和注意力机制,保留原图背景和人体未被遮挡部分。
-
动态生成服装掩码。
-
-
优点:
-
支持复杂背景和多人场景。
-
保留配饰(如包包、鞋子)。
-
-
缺点:
-
训练需要大量标注数据(分割标签)。
-
对极端姿势泛化性差。
-
5. SwapNet (2018)
-
论文: SwapNet: Garment Transfer in Single View Images (ECCV 2018)
-
应用场景:
实现不同人物之间的服装交换,而非单纯试衣。 -
优点:
-
同时处理服装和纹理迁移。
-
支持非刚性形变。
-
-
缺点:
-
依赖成对数据训练。
-
无法处理遮挡严重的场景。
-
6. SieveNet (2020)
-
论文: SieveNet: A Unified Framework for Robust Image-Based Virtual Try-On (WACV 2020)
-
核心方法:
引入多阶段筛选机制,逐步修正形变和合成误差。 -
优点:
-
对低质量输入(如模糊图片)鲁棒性强。
-
支持多品类服装(上衣、裤子等)。
-
-
缺点:
-
模型复杂度高,推理速度慢。
-
7. HR-VITON (2022)
-
论文: High-Resolution Virtual Try-On with Misalignment Robustness (CVPR 2022)
-
核心方法:
基于高分辨率生成器(如StyleGAN2)和对齐损失函数,提升细节真实感。 -
优点:
-
生成4K分辨率图像,适合电商场景。
-
处理服装-人体错位问题。
-
-
缺点:
-
需要显存大的GPU支持。
-
技术挑战与未来方向
-
共性缺点:
-
对透明/反光材质(如丝绸)处理不足。
-
依赖人体关键点检测,误差会传递到生成结果。
-
-
趋势:
-
扩散模型(如Stable Diffusion)的引入提升真实感。
-
3D人体建模(如SMPL)结合2D生成。
-