这份 Stable diffusion 提示词攻略,记得收好了!

大家好,今天给大家分享的是关于 Stable diffusion 提示词的基础和进阶语法,为什么有必要了解这个呢?首先是提示词对出图效果影响很大,了解提示词的用法有助于我们写出更优秀的提示词;其次就是我们可能会去C站拷贝别人的提示词,虽然直接拷贝过来也能得到不错的效果,但这样只会“知其然,不知其所以然”,所以如果你想好好掌握SD,这一关还是有必要闯的!

一、基础规则

第一个规则就是:提示词之间是用英文逗号分隔的,如果你觉得把所有提示词都挤在一行比较不美观,你也可以换行,但是换行并不代表分隔提示词,如果你想分隔的话还是得加上英文逗号。

第二个规则是:提示词的权重从前到后依次降低,也就说越靠前的提示词权重越高,不过这也有一个前提,就是你的提示词没有使用任何增强/降低权重的语法。

比如我有这样两组提示词(大致场景是小女孩和城堡):

\# A组提示词  
castle,landscape,1girl,loli,silver hair,school\_uniform,crystal\_earrings,kind\_smile,arm\_support,in summer,book,mini\_witch\_hat,frilled,strappy\_heels,  
  
\# B组提示词  
castle,landscape,1girl,loli,silver hair,school\_uniform,crystal\_earrings,kind\_smile,arm\_support,in summer,mini\_witch\_hat,frilled,strappy\_heels,book,  

这两组提示词的区别在于 book 提示词位置的不同(一个在中间,一个在最后),结果就是一个书比较多,一个书比较少

第三个规则(注意事项)是:提示词的数量尽量控制在75个Token以内。根据第二条规则,其实就可以得到越后面的提示词权重越低,所以提示词并不是越多越好。

SD的界面其实也有相应的提示,那Token是怎么算的呢?一般来说,一个单词算一个Token,英文逗号也算,比如castle,就是2个Token。

第四个规则(注意事项)是:提示词选用词组,而不是自然语言描述(仅针对v1.5模型,不包含SDXL)。还是上面的场景,一个萝莉女孩站在城堡旁边,我们翻译之后会变成:A loli girl stands by the castle

这其实就是一种自然语言描述,这样也能出图,只是像 by the 这种单词其实作用不大,但却白白浪费了Token和权重。
这份完整版的AI绘画(SD、comfyui、AI视频)整合包已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

二、提示词权重语法

在SD中,每个提示词默认的权重为1,虽然我们可以通过调整提示词的位置来影响它的权重,但是这样未免太过麻烦,所以SD其实也有一套增强/降低权重的语法。

2.1 小括号增强

在SD中,英文小括号()可以用来增强提示词的权重,一个小括号可以增加1.1倍权重,最多增加3个小括号,也就是 1.1 * 1.1 * 1.1 = 1.331 倍权重

2.2 大括号增强?

这个有待考证,据说英文大括号 { } 也可以用来增强提示词的权重,一个相当于是 1.05 倍的权重,但是我试了下效果并不明显,所以不确定这种语法在秋叶SD中是否有效

2.3 中括号降低

与小括号类似,不过中括号 [] 是用于降低提示词权重,一个中括号是0.9倍权重,最多3个也就是 0.729 倍权重

2.4 小括号直接增强/降低(推荐)

这种方式的写法是: (xxx: 1.5) ,冒号后面的就是权重,比较推荐这种设置方式,看起来比较直观。

注:试了下,不加小括号也有效果,比如 book:1.5

这种方式还有一个设置的快捷键:就是先选好提示词,然后按住 CTRL 键,通过控制上下方向键就可以快速调整。

三、提示词进阶语法

SD的提示词除了上述的基础语法外,还有一些进阶的玩法。

3.1 下划线连接

通过下划线(_)连接两个单词,可以起到连接的作用,便于SD将其看做一个整体,这种语法在秋叶整合包的提示词非常常见。

比如这个例子



  

  

  

  

  

  

  

\# A组提示词  
plate,coffee,cake,  
  
\# B组提示词  
plate,coffee\_cake,  

在这两组提示词,A组由于coffee和cake没有连接,所以SD出图的时候可能会同时返回咖啡和蛋糕,但是B组返回的是咖啡蛋糕。

3.2 交替采样

交替采样的语法是: [prompt1 | prompt2 | prompt3]

采用这种方式,第一步采样会使用 prompt1提示词,第二步使用 prompt2提示词,第三步使用 prompt3提示词,到第四步又会使用回 prompt1提示词,循环往复,交替进行。

如果你想把两种,或者多种东西融合成一种,比如颜色渐变,或许这是一个值得尝试的方案。

还是给一个例子



  

  

  

  

  

  

  

\# A组提示词  
1girl,red hair,blue hair,wavy hair,  
  
\# B组提示词  
1girl,\[red|blue|wavy\] hair,  

对比图如下:

3.3 比例采样

比例采样跟前面的交替采样有点像,但是比例采样可以做到更精细化!

第一种方式:prompt1,[prompt2: 0-1数值]。这种方式表示采样值达到指定数值后才使用提示词 prompt2。

第二种方式:prompt1,[prompt2:: 0-1数值]。这种方式比第一种多了一个冒号,表示采样值达到指定数值后就不使用提示词 prompt2 了。

第三种方式:[prompt1:prompt2: 0-1数值]。假设数值是0.3,这种方式表示采样值前30%使用prompt1,后70%使用prompt2。

关于比例采样的使用场景,其实也是适合将多种东西合并在一起,只不过他因为能做到更精细化,所以出图效果会更好

注:特朗普和拜登的融合肖像

四、提示词预设样式

有时候我们写了一组不错的提示词,想着以后可以再用,这时候预设样式就派上用场了,它的作用就是保存提示词,便于我们下次直接复用。

需要注意的是,保存的方式不同版本有所不同,目前我的版本是这样的:

五、提示词书写插件

如果你是用秋叶大佬的SD,那么它自带的提示词插件其实已经能够满足大部分人的需求,不仅拥有非常多的提示词,而且提示词都整好分类了,并且自带翻译,使用非常方便。

如果你是Linux系统,或者因为其他原因用不了秋叶SD该怎么办?其实很简单,因为秋叶SD也是通过安装提示词插件才实现上面的效果,如果你是sd-webui,同样可以通过安装插件实现相同的效果。
这份完整版的AI绘画(SD、comfyui、AI视频)整合包已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### 关于Stable Diffusion 2权重文件的获取与配置 #### 权重文件的来源 Stable Diffusion 2的权重文件可以通过官方渠道或其他可信平台获得。通常情况下,这些权重文件会被托管在Hugging Face Model Hub或类似的开源平台上[^1]。对于希望快速验证模型功能的用户来说,也可以通过Replicate这样的在线服务访问由社区贡献者分享的预训练模型版本[^2]。 #### 下载方法 要下载Stable Diffusion 2的具体权重文件,可以按照以下方式进行操作: - **Hugging Face**: 访问[Hugging Face](https://huggingface.co/)并搜索`stabilityai/stable-diffusion-2`仓库,在该页面中找到对应的`.ckpt`或者`.safetensors`格式的权重文件链接。 - **其他资源站点**: 如果无法直接从上述源获取,则可查阅相关博客文章或论坛讨论帖了解替代途径[^3]。 #### 配置过程概述 完成权重文件下载之后,需将其放置到指定目录下以便程序加载使用。以下是基于Python脚本的一个简单示例来展示如何读取已有的SDv2模型: ```python from diffusers import StableDiffusionPipeline, EulerDiscreteScheduler import torch model_id = "./path_to_your_downloaded_weights" scheduler = EulerDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler") pipe = StableDiffusionPipeline.from_pretrained( model_id, scheduler=scheduler, revision="fp16", torch_dtype=torch.float16, ).to("cuda") prompt = "a photo of an astronaut riding a horse on mars" image = pipe(prompt).images[0] image.save("./output_image.png") ``` 此代码片段展示了利用自定义路径下的权重构建管道的过程,并设置了调度器以改进推理效率[^4]。 #### 注意事项 当涉及实际部署时,请注意遵循各提供方关于许可协议的规定;另外考虑到某些大型神经网络可能占用较多计算资源,在执行前确认设备满足最低硬件要求尤为重要。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值