DFS全称深度优先搜索,如下图
DFS的遍历为A->B->D->E->C->F->G,这是DFS遍历二叉树的顺序。
例如这道题题洛谷B3625迷宫寻路,这道题可用DFS,BFS,这里使用DFS。
首先说明一下题解变量意义:
int n,m,a[200][200];
int dx[] = {1,0,-1,0},dy[] = {0,1,0,-1};
n,m表示终点坐标,dx,dy表示一个点的下一步的四种走法对x,y的变化。
递归函数最重要的就是退出条件(这个很容易忘记写)
if(x == n && y == m){
f == true;
return;
}
如果当前点的已经到达终点就可以退出了(这里的f表示是否到达终点与最后答案有关)。
for(int i = 0;i < 4;++i){
int x2 = x + dx[i],y2 = y + dy[i];
if(x2 > 0 && x2 <= n && y2 > 0 && y2 <= m){
if(a[x2][y2] == 0){
dfs(x2,y2);
}
}
}
x2,y2表示当前点的坐标,上一个点判断有没有走出去,如果下一个点没有障碍(a[x2][y2] == 0)即到达下一个点。
在主函数中预处理时将如果遇见障碍将a[i][j] = 1表示a[i][j]是障碍不能通行;
for(int i = 1;i <= n;++i){
for(int j = 1;j <= m;++j){
cin >> l; //l是 char类型的
if(l == '#'){
a[i][j] = 1;
}
}
}
加上特判如果起点或终点是障碍那么不能到达终点
AC代码:
#include <iostream>
using namespace std;
int n,m,a[200][200];
int dx[] = {1,0,-1,0},dy[] = {0,1,0,-1};
bool f = false;
char l;
void dfs(int x,int y){
if(x == n & y == m){
f = true;
return;
}
a[x][y] = 1;
for(int i = 0;i < 4;++i){
int x2 = x + dx[i],y2 = y + dy[i];
if(x2 > 0 && x2 <= n && y2 > 0 && y2 <= m){
if(a[x2][y2] == 0){
dfs(x2,y2);
}
}
}
}
int main(){
cin >> n >> m;
for(int i = 1;i <= n;++i){
for(int j = 1;j <= m;++j){
cin >> l;
if(l == '#'){
a[i][j] = 1;
}
}
}
if(a[1][1] == 1 || a[n][m] == 1){
cout << "No";
return 0;
}
dfs(1,1);
if(f == true){
cout << "Yes";
}else{
cout << "No";
}
return 0;
}
如果可以请点一个免费的赞吧,谢谢!