Offset Noise

文章讨论了StableDiffusion在生成暗亮图像时存在的问题,介绍OffsetNoise如何通过调整初始噪声分布来减少图片中的明暗区域不均衡。作者指出,前向过程中的噪声实际不符合期望的N(0,I)分布,而反向过程依赖于此分布,两者存在差异。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

如果尝试用stable diffusion生成特别暗或特别亮的图像,它几乎总是生成平均值相对接近 0.5 的图像。如下图所示,生成暗的图片总是带着明亮的区域(暗的街道明亮的光),生成亮的图片总是带着暗的区域(白的雪暗的树)。
在这里插入图片描述
Offset Noise正是为了解决这个问题的一个trick。

stable diffusion使用的初始噪声是服从 N ( 0 , I ) N(\pmb{0}, \pmb{I}) N(0,I)的,如下:

noise = torch.randn_like(latents)

Offset Noise将初始噪声改为

noise = torch.randn_like(latents) + 0.1 * torch.randn(latents.shape[0], latents.shape[1], 1, 1)

因为虽然前向过程在不停的往图片加噪声,但实际上,因为实现的问题,前向过程最后并没有得到真的符合 N ( 0 , I ) N(\pmb{0}, \pmb{I}) N(0,I)分布的噪声。而反向过程是从 N ( 0 , I ) N(\pmb{0}, \pmb{I}) N(0,I)中采样初始噪声的,这导致了前向过程和反向过程之间的差异。

参考

https://www.crosslabs.org/blog/diffusion-with-offset-noise
Common Diffusion Noise Schedules and Sample Steps are Flawed

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值