计算机视觉领域一直在不断发展和创新,其中目标检测是一个重要的研究方向。YoloV8是一种广为使用的目标检测算法,但是为了进一步提升其性能,我们在YoloV8的基础上进行了改进,引入了可变形自注意力机制。这个创新的改进使得YoloV8在目标检测任务中取得了更好的性能。
自注意力机制是一种能够学习特征之间依赖关系的方法。我们在YoloV8的网络结构中引入了自注意力模块,使得网络能够自动学习目标之间的重要特征和关联性。这种改进使得网络能够更加准确地定位和识别目标。
下面是我们改进后的YoloV8算法的源代码:
import torch
import torch.nn as nn
import torch.nn.functional as F
# 定义自注意力模块
clas