首先,计算电感储能量(用到笔记4的电磁学知识)
根据 E = 1 2 L I 2 = 1 2 L I × I E = \frac{1}{2}LI^{2} = \frac{1}{2}LI × I E=21LI2=21LI×I
H × L e = N × I ⇒ I = H × L e N ⇒ H× L_{e} = N ×I \Rightarrow I = \frac{H × L_{e}}{N} \Rightarrow H×Le=N×I⇒I=NH×Le⇒ I = B × L e μ e μ 0 N I = \frac{B × L_{e}}{\mu_{e} \mu_{0} N} I=μeμ0NB×Le ①
L × Δ I = N × A e × μ Δ H L × \Delta I = N × A_{e} × \mu\Delta H L×ΔI=N×Ae×μΔH ②
把①②式带入E得: E = 1 2 × N × A e × μ Δ H × B × L e μ e μ 0 N = B 2 × L e × A e 2 μ e μ 0 E = \frac{1}{2} × N × A_{e} × \mu\Delta H × \frac{B × L_{e}}{\mu_{e} \mu_{0} N} = \frac{B^{2} × L_{e} × A_{e}}{2\mu_{e} \mu_{0}} E=21×N×Ae×μΔH×μeμ0NB×Le=2μeμ0B2×Le×Ae
L e L_{e} Le为磁芯磁路的有效长度, A e A_{e} Ae为截面积,故 V e = L e × A e V_{e} = L_{e} × A_{e} Ve=Le×Ae为磁芯的有效体积
所以电感储能 E = B 2 × V e 2 μ e μ 0 E = \frac{B^{2} × V_{e}}{2\mu_{e} \mu_{0}} E=2μeμ0B2×Ve
1. Buck - Boost变换器中
由于电流越大,磁感应强度B就越大(毕奥-萨伐尔定律),电流与磁感应强度的变化趋势相同,即在
T
o
n
T_{on}
Ton期间,
I
L
m
i
n
I_{Lmin}
ILmin对应
B
m
i
n
B_{min}
Bmin,
I
L
m
a
x
I_{Lmax}
ILmax对应
B
m
a
x
B_{max}
Bmax,所以在
T
o
n
T_{on}
Ton或者
T
o
f
f
T_{off}
Toff期间,
Δ
B
=
B
m
a
x
−
B
m
i
n
\Delta B = B_{max} - B_{min}
ΔB=Bmax−Bmin,对应的
Δ
E
=
B
m
a
x
2
×
V
e
2
μ
e
μ
0
−
B
m
i
n
2
×
V
e
2
μ
e
μ
0
=
V
e
μ
e
μ
0
×
B
m
a
x
+
B
m
i
n
2
×
(
B
m
a
x
−
B
m
i
n
)
=
V
e
μ
e
μ
0
Δ
B
×
B
D
C
\Delta E = \frac{B_{max}^{2} × V_{e}}{2\mu_{e} \mu_{0}} - \frac{B_{min}^{2} × V_{e}}{2\mu_{e} \mu_{0}} = \frac{V_e}{\mu_{e}\mu_{0}} × \frac{B_{max} + B_{min}}{2} × (B_{max} - B_{min}) = \frac{V_e}{\mu_{e}\mu_{0}}\Delta B × B_{DC}
ΔE=2μeμ0Bmax2×Ve−2μeμ0Bmin2×Ve=μeμ0Ve×2Bmax+Bmin×(Bmax−Bmin)=μeμ0VeΔB×BDC
(
B
D
C
B_{DC}
BDC为平均磁感应强度)
Buck - Boost变换器在
T
o
n
T_{on}
Ton期间,电感充能,
T
o
f
f
T_{off}
Toff期间,电感放能
所以
Δ
E
\Delta E
ΔE等于
T
o
n
T_{on}
Ton期间电源的输入能量
Δ
E
=
U
i
n
×
I
L
×
T
o
n
=
U
i
n
×
I
L
×
D
×
T
=
U
i
n
×
I
i
n
×
T
=
P
i
n
f
s
w
\Delta E = U_{in} × I_{L} × T_{on} = U_{in} × I_{L} × D × T = U_{in} × I_{in} × T = \frac{P_{in}}{f_{sw}}
ΔE=Uin×IL×Ton=Uin×IL×D×T=Uin×Iin×T=fswPin
(
I
i
n
=
I
L
×
D
)
(I_{in} = I_{L} × D)
(Iin=IL×D)
代入:
Δ
E
=
V
e
μ
e
μ
0
Δ
B
×
B
D
C
\Delta E = \frac{V_e}{\mu_{e}\mu_{0}}\Delta B × B_{DC}
ΔE=μeμ0VeΔB×BDC
得到电感磁芯有效体积 V e = μ e × μ 0 Δ B × B D C × P i n f s w V_{e} = \frac{\mu_{e} × \mu_{0}}{\Delta B × B_{DC}} × \frac{P_{in}}{f_{sw}} Ve=ΔB×BDCμe×μ0×fswPin
2. Buck 变换器中
开关闭合
T
o
n
T_{on}
Ton期间电源除了给电感“充电”,还用来驱动负载
U
i
n
×
I
L
×
T
o
n
=
Δ
E
+
U
o
×
I
L
×
T
o
n
U_{in} × I_{L} × T_{on} = \Delta E + U_{o} × I_{L} × T_{on}
Uin×IL×Ton=ΔE+Uo×IL×Ton
由笔记1的 “伏秒积”平衡可知
U
o
=
D
×
U
i
n
U_{o} = D × U_{in}
Uo=D×Uin
Δ
E
=
(
U
o
−
U
i
n
)
×
I
L
×
T
o
n
=
(
1
−
D
)
×
U
i
n
×
I
L
×
D
×
T
=
(
1
−
D
)
×
U
i
n
×
I
i
n
×
T
=
(
1
−
D
)
×
P
i
n
f
s
w
\Delta E = (U_{o} - U_{in}) × I_{L} × T_{on} = (1 - D) × U_{in} × I_{L} × D × T = (1 - D) × U_{in} × I_{in} × T = (1 - D) × \frac{P_{in}}{f_{sw}}
ΔE=(Uo−Uin)×IL×Ton=(1−D)×Uin×IL×D×T=(1−D)×Uin×Iin×T=(1−D)×fswPin
代入:
Δ
E
=
V
e
μ
e
μ
0
Δ
B
×
B
D
C
\Delta E = \frac{V_e}{\mu_{e}\mu_{0}}\Delta B × B_{DC}
ΔE=μeμ0VeΔB×BDC
得: V e = μ e × μ 0 Δ B × B D C × P i n f s w × ( 1 − D ) V_{e} = \frac{\mu_{e} × \mu_{0}}{\Delta B × B_{DC}} × \frac{P_{in}}{f_{sw}} × (1 - D) Ve=ΔB×BDCμe×μ0×fswPin×(1−D)
3. Boost变换器中
T
o
n
T_{on}
Ton期间,电感充能
Δ
E
=
U
i
n
×
I
L
×
T
o
n
=
U
i
n
×
I
i
n
×
D
×
T
=
P
i
n
f
s
w
×
D
\Delta E = U_{in} × I_{L} × T_{on} = U_{in} × I_{in} × D × T = \frac{P_{in}}{f_{sw}} × D
ΔE=Uin×IL×Ton=Uin×Iin×D×T=fswPin×D
(
I
i
n
=
I
L
)
(I_{in} = I_{L})
(Iin=IL)
代入:
Δ
E
=
V
e
μ
e
μ
0
Δ
B
×
B
D
C
\Delta E = \frac{V_e}{\mu_{e}\mu_{0}}\Delta B × B_{DC}
ΔE=μeμ0VeΔB×BDC
得: V e = μ e × μ 0 Δ B × B D C × P i n f s w × D V_{e} = \frac{\mu_{e} × \mu_{0}}{\Delta B × B_{DC}} × \frac{P_{in}}{f_{sw}} × D Ve=ΔB×BDCμe×μ0×fswPin×D
综上
三个变换器中的 V e V_{e} Ve相比较可知,各参数相同时,Buck - Boost变换器的电感体积最大,所以实际设计中应尽可能使用Buck和Boost