给你一个满足下述两条属性的 m x n 整数矩阵:
- 每行中的整数从左到右按非严格递增顺序排列。
- 每行的第一个整数大于前一行的最后一个整数。
给你一个整数 target ,如果 target 在矩阵中,返回 true ;否则,返回 false 。
link
题解
思路1
- 2次binaray search;
- 第一次查找,先找到
target
所在的行 - 第二次再在对应行中进行查找
2次二分查找,复杂度是 O ( l o g ( r o w ) + l o g ( c o l ) ) = O ( l o g ( r o w ⋅ c o l ) ) O(log(row) +log(col))=O(log(row\cdot col)) O(log(row)+log(col))=O(log(row⋅col))
leetcode官方题解(加了注释版)如下:
upper_bound(begin, end, val)
函数在increasing order的数组中返回 1st 大于val
的数,即找上界
class Solution {
public:
bool searchMatrix(vector<vector<int>> matrix, int target) {
// return 行首比target大的行号
auto row = upper_bound(matrix.begin(), matrix.end(), target, [](const int b, const vector<int> &a) {
return b < a[0];
});
// 如果是第一行,显然第一行第一个数比target大要return false
if (row == matrix.begin()) {
return false;
}
--row; // get 如果target在matrix中的行号
return binary_search(row->begin(), row->end(), target); //再次binary search
}
};