关于参数估计

本文介绍了参数估计的概念,包括点估计和区间估计。点估计的三种方法——矩估计、极大似然估计和贝叶斯估计被详细阐述,并讨论了无偏性、相合性和最小方差误差作为点估计的准则。同时,通过具体例子展示了如何运用这些方法进行实际的参数估计。
摘要由CSDN通过智能技术生成

虽然非计算机专业,但因为一些原因打算学习西瓜书,可由于长时间没有碰过概率统计的知识,有所遗忘。所以特意重新复习了一遍类似的知识,写在这里权当总结。主要参考《概率论与数理统计》(陈希孺)。

参数估计就是根据样本推断总体的均值或者方差、或者总体分布的其他参数。可以分两种,一种是点估计(估计一个参数的值),另一种是区间估计(估计一个参数的区间)。参数估计的方法有多种,各种估计方法得出的结果不一定相同,很难简单的说一个必定优于另一个。

点估计

点估计主要有三种方法:矩估计、最大似然估计、贝叶斯估计。

矩估计

定义 k k 阶样本原点矩

a k = 1 n i = 1 n X i k
k=1 k = 1 则原点矩显然就是样本均值 X¯ X ¯ ;再定义 k k 阶样本 中心矩
m k = 1 n i = 1 n ( X i X ¯ ) k .

另一方面,总体分布设为

f(x;θ1,θ2,...,θk) f ( x ; θ 1 , θ 2 , . . . , θ k )

则有 m m 阶原点矩
α m = x m f ( x ; θ 1 , θ 2 , . . . , θ k ) d x .

矩估计的思想就是:令样本 k k 阶矩等于总体 k 阶矩,得到一组方程,由此 反解出 { θi} { θ i } .
一般原则是要求解 n n 个参数,就选 n 个最低阶的矩,令它们相等并反解。

例题:设 X1,...,Xn X 1 , . . . , X n 为区间 [θ1,θ2] [ θ 1 , θ 2 ] 上均匀分布总体中抽出的 n n 个样本,估计出 θ 1 , θ 2 .
计算出样本中心矩 m1=iXi/n m 1 = ∑ i X i / n m2=iX2i/n m 2 = ∑ i X i 2 / n .再计算出总体中心矩分别为 θ1+θ22 θ 1 + θ 2 2 (θ1+θ2)212 ( θ 1 + θ 2 ) 2 12 ,令它们对应相等,解出来两个 θ θ 即可。

极大似然估计

符号同前,样本 (X1,...,Xn) ( X 1 , . . . , X n ) 的联合概率密度(PDF)为

f(x1;θ1,...,θk)f(x2;θ1,...,θk)...f(xn;θ1,...,θk). f ( x 1 ; θ 1 , . . . , θ k ) f ( x 2 ; θ 1 , . . . , θ k ) . . . f ( x n ; θ 1 , . . . , θ k ) .

现在反过来, 固定样本 { Xi} { X i } 而把上面PDF看作关于 { θi} { θ i } 的“密度函数”,加引号是因为实际上 { θi} { θ i } 是固定参数而非随机变量,这里可以叫做似然函数(likehood, 而非probability)。既然似然函数的 { Xi} { X i } 固定,那么可以认为 最可能的 { θi} { θ i } 取值必然是使得似然函数最大的那组取值。也就是说 { θi} { θ i } 的估计值是使得下面表达式最大的那个值
L(X1,,Xn;θ1,,θk)=i=1nf(Xi;θ1,,θk) L ( X − 1 , ⋯ , X n ; θ 1 , ⋯ , θ k ) = ∏ i = 1 n f ( X i ; θ 1 , ⋯ , θ k )
上式为累乘,取对数变为求和累加,称为对数似然函数( 因为对数函数也同一点取得最大值)
lnL=i=1nlnf(Xi;θ1,,θk) l n L = ∑ i = 1 n l n f ( X i ; θ 1 , ⋯ , θ k )
如果函数性质足够好,用上式分别对 { θi} { θ i } 求导令其为零,求得驻点再验证极值点和最值点。

例题:设 X1,,Xn

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值