数据结构基础:P1-基本概念----编程作业02:Maximum Subsequence Sum

本系列文章为浙江大学陈越、何钦铭数据结构学习笔记,前面文章链接如下
数据结构基础:P1-基本概念
数据结构基础:P1-基本概念----编程作业01:最大子列和问题


一、题目描述

题目描述: 给定K个整数组成的序列 { N 1 , N 2 , . . . , N k } \{ {N_1},{N_2},...,{N_k}\} {N1,N2,...,Nk} ,连续子列被定义为 { N i , N i + 1 , . . . , N j } \{ {N_i},{N_{i + 1}},...,{N_j}\} {Ni,Ni+1,...,Nj},其中 1 ≤ i ≤ j ≤ K 1 \le i \le j \le K 1ijK。最大子列和则被定义为所有连续子列元素的和中最大者。例如给定序列{ -2, 11, -4, 13, -5, -2 },其连续子列{ 11, -4, 13 }有最大的和20。现要求你编写程序,计算给定整数序列的最大子列和,同时将最大子列的首尾元素打印出来。
输入格式:
输入第1行给出正整数 K ( ≤ 100000 ) K (≤100000) K(100000);第2行给出 K K K 个整数,其间以空格分隔。
输出格式:
对于每个测试案例,在一行中输出最大的子列和、最大子序列的首尾元素。这些数字之间必须有一个空格,但在行末不能有多余的空格。如果最大子序列不是唯一的,则输出具有最小元素下标 i i i j j j 的子序列(如示例案例所示)。如果这K个数字都是负数,那么它的最大和被定义为0,你应该输出整个序列的第一个和最后一个数字
输入样例:
10
-10 1 2 3 4 -5 -23 3 7 -21
输出样例:
10 1 4


二、代码实现

思路分析

本题是对前面最大子列和问题的扩展,需要我们额外输出最大子列的首尾元素。在线处理复杂度为 O ( N ) \rm{O(N)} O(N),因此我们采用该算法。
①遍历数组A,令当前子列加上A[i]。
②若当前子列和小于0,则说明A[i]无法为当前子列带来收益,于是抛弃A[i],继续向后看:
----将当前子列和重置为0
----将i+1记录为临时首,后面更新时要用到
③若当前子列和不小于0且大于最大子列和,则说明A[i]可以为当前子列带来收益,于是更新:
----将最大子列和更新为当前子列和
----A[i]就是最大子列的尾
----将最大子列的首更新为前面记录的值

代码实现

#define _CRT_SECURE_NO_WARNINGS
#include <stdio.h>

//在线处理。算法复杂度:O(N)
void MaxSubseqSum(int A[], int N)
{
	int MaxSum = 0, ThisSum = 0;               //最大子列和、当前子列和
	int Left = 0, Right = 0, LeftTemp = 0;     //最大子列的首、尾、临时首
	for (int i = 0; i < N; i++) {
		ThisSum += A[i];     
		if (ThisSum < 0) {   //当前子列加上A[i]后小于0
			LeftTemp = i+1;  //抛弃A[i],将最大子列的首往右移动一位
			ThisSum = 0;     //抛弃A[i],将最大子列和设置为0
		}
		else if (ThisSum > MaxSum) { //当前子列和大于最大子列和
			MaxSum = ThisSum;        //更新最大子列和
			Right = i;				 //A[i]就是最大子列的尾
			Left = LeftTemp;         //更新最大子列的首
		}
	}
	if(MaxSum < 0)
		printf("0 %d %d\n", A[0], A[N-1]);
	else
		printf("%d %d %d\n", MaxSum, A[Left], A[Right]);
}

int main()
{
	int Array[10000];
	int n;
	scanf("%d", &n);
	for (int i = 0; i < n; i++) {
		scanf("%d", &Array[i]);
	}

	MaxSubseqSum(Array, n);

	return 0;
}

运行,输入测试样例,结果正确。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

知初与修一

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值