大模型时代如何寻找研究方向

最近听了Zhu Yi大佬的视频,并转载了一个小伙伴的笔记。

1、 Efficeency 提升训练效率,

这里以PEFT(parameter efficient fine tuning)为例

3、plug-and-play

做一些即插即用的模块,例如模型的模块、目标函数、新损失函数、数据增强方法等等。

4、Dataset,evaluation and survey

构建数据集、发表分析为主的文章或者综述论.

一、Efficient(PEFT)

  • 论文地址:https://arxiv.org/abs/2302.03024
  • 论文标题:AIM: Adapting Image Models for Efficient Video Action Recognition
  • 标题翻译:调整图像模型以实现高效的视频动作识别

思考:已经训练好的图像模型是否需要继续微调?

1、clip已经证明了即使ZeroShot(模型不变,直接在各个数据集上进行推理),它的效果也很好。即一个训练很好的图片模型从中提取视觉特征是有泛化性、有效的。

2、继续微调会导致灾难性遗忘。如果使用少量数据在大模型上微调,可能会直接过拟合,或者大模型的很多特征丢失。

结论:预训练的图像模型不需要继续微调

传统模型和论文改进的微调方法对比图:

因此,论文的做法是,尝试将模型参数锁住,在上面加一些时序处理模块、目标函数等修改周边的方式(即PEFT)让图片模型能够做视频理解的任务,不需要重新训练视频模型,省时省力。

如上图所示,AIM模型就是在图b的ViT模型中加入图a的Adapter,共有图c、d、e三种方式:

1、Spatial Adaptation,只在S-MSA层后面加入Adapter,即不增加视频理解能力,只加一些学习的参数。

2、Temporal Adaptation,复用一个MSA层,在两个MSA层后面都加入Adapter,即让模型从Spatial和Temporal两个方向上进行学习,从而有时序建模的能力。

3、Joint Adaptation,在Temporal Adaptation的基础上,在MLP边上也加入Adapter,即让三个Adapter各司其职,使得优化问题更简单一些。

注:MSA是多头自注意力(MultiHead Self-Attention,S-MSA和T-MSA共享权重,但维度不同。

效果如下图所示,只用14M参数的AIM模型效果已经高过之前121M的模型。

一些其他方法:

1、adapter

  • 论文地址:https://arxiv.org/abs/1902.00751
  • 论文标题:Parameter-Efficient Transfer Learning for NLP

Adapter层的结构,如下图右边所示:下采样FC层+非线性激活层+上采样FC层,加上残差连接。

adapter层参数量和大模型相比非常少,例如在175B的GPT3中使用LoRa,需要训练的参数只要万分之一。因此训练成本大幅降低。

2、prompt tuning

  • 论文地址:https://arxiv.org/abs/2109.01134
  • 论文标题:CoOp:Learning to Prompt for Vision-Language Models

prompt tuning是指可以任意调整提示词,这样的调整对最后的性能会有很大的影响,能否得到想要的结果,取决于有没有选择一个好的提示词.

Prompt分为两种:

Hard Prompt:人工设置的提示词,不能修改也无法学习。设置这些需要一定的先验知识,但我们并不会总有这样的先验知识。

Soft Prompt:将提示词设置为一个可学习的向量。如下图所示 ,将文本端(text encoder)的输入CLASS设置为learnable context,模型优化的是这个context部分。这样既可以节省很多计算量 ,也可以避免在下游任务时手动设置提示词。

另外:将可学习的Prompt方法用到纯视觉任务中,做法如下图所示。

  • 论文地址:https://arxiv.org/abs/2203.12119
  • 论文标题:Visual Prompt Tuning

图中蓝色部分是原来训练好的模型,红色是需要微调的prompt,加入Prompt tuning有两种方式:

1、VPT: Deep,在每一层的输入输出都加入prompt。

2、VPT: Shallow,在输入端加入prompt。

近期PEFT方法总结,从统一的观点进行归纳:

  • 论文地址:https://arxiv.org/abs/2110.04366

2、Existing stuff(pretrained model)、New directions

使用别人的预训练模型,新的研究方向

1、巧妙使用别人的预训练模型,从而达到去做FewShot,ZeroShot,或者最多Fine Tuning的实验。

2、新的研究方向。

通过这篇论文讲述这两点是如何运用的:

  • 论文地址:https://arxiv.org/abs/2207.05027
  • 论文标题:Unsupervised Semantic Segmentation with Self-supervised Object-centric Representations

从标题就可以看出这两点技巧:

1、这里的Self-supervised是指使用了预训练好的DINO、DeepUSPS、BASNet等网络

2、这里做的方向是Object-centric Learning,属于蓬勃发展的题目,玩家不多、数据集不大

上图展示了如何使用几个预训练好的模型,在无监督的情况下找到新的物体,步骤如下:

1、通过预训练模型DeepUSPS找到一些显著性物体的Mask。

例如,图片中的篮球可以得到一个圆形的Mask

2、根据Mask将图片中的对应物体抠出来,并调整大小为224*224。

例如,将图片中的篮球抠出来并放大

3、然后将步骤2得到的图片通过预训练模型DINO返回一个1024*1的特征(global representation)。

4、将所有的特征进行聚类Clustering,这样就可以通过无监督学习得到这些物体的分类ID。

注:聚类只能将相同的物体分类到一起,但并不知道具体是什么物体。

5、将图片和对应的分类ID去训练一个语义分割网络(Semantic segmentation network)。

注:这里相当于一个有监督的学习,标签来自于步骤4

6、一张图片可能有多个物体,所以加一个Self-training,多做几个轮回。

这样就可以从图片中找到物体了。

三、plug-and-play

做一些通用的、即插即用的模块,在一个设定的范围内,加入了这样的模块后,能够有一个统一的涨点,并且能给出合适的分析,就非常有说服力了。通过MixGen论文讲述如何加入模块:

  • 论文地址:https://arxiv.org/abs/2206.08358
  • 论文标题:MixGen: A New Multi-Modal Data Augmentation

文本的模型都很大,图片的模型相对来说小一些,但是自注意力的参数是可以共享的,所以尝试用文本大模型来蒸馏图片小模型

注:模型蒸馏:使用训练集训练出来一个完整复杂的teacher模型,然后设计一个小规模的student模型,再固定teacher模型的权重参数,然后使用训练集和teacher模型的输出同时对student模型进行训练,此时就需要设计一系列loss,让student模型在蒸馏学习的过程中逐渐向teacher模型的表现特性靠拢,使得student模型的预测精度逐渐逼近teacher模型。

为什么之前图片模型不做数据增强?

1、图片模型训练时已经用了很多图片了,不需要再做数据增强。

2、或者做了数据增强,但是将其中的Color Jittering和Random Filp去掉了,因为这两个对图片的变化会导致图片和文本不匹配。

例如:图片有白色的狗和绿色的树,只对图片做Color Jittering会导致颜色变化,图片中不再是白色的狗,但是文本依然是白色的狗,这样文本和图片就不匹配了。

论文的做法:既然目标是尽可能保留更多信息,这里的做法很简单粗暴,就是直接将两个句子拼接在一起,这样就可以做到不丢失信息的情况下得到新的训练样本。

例如下图,将两个图片通过数据增强得到第三个图片,同时将两个图片的文本进行拼接得到第三个图片的文本。

审稿人的建设性提议:在下游任务只有少量数据时进行数据增强。

四、Dataset,evaluation and survey

构建数据集、发表分析为主的文章或者综述论文,这里举了两篇论文为例。

以数据集为主的big detection,将三个数据集整合到一起:做一个新的benchmark

  • 论文地址:https://arxiv.org/abs/2203.13249

视频动作检测的综述论文:

  • 论文地址:https://arxiv.org/abs/2012.06567

转载:大模型时代下做科研的四个思路【论文精读·52】 - 哔哩哔哩 (bilibili.com)

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
预训练语言模型(Pretrained Language Model,PLM)是指在大规模语料库上训练的通用语言模型,可以用于各种自然语言处理任务。PLM 的出现极大地促进了自然语言处理领域的发展,成为了近年来的热点研究方向。 PLM 的历史可以追溯到 2013 年的 Word2vec 模型和 2015 年的 GloVe 模型,它们以词向量为基础,但都无法处理词序关系。2018 年,Google 团队提出了 BERT 模型(Bidirectional Encoder Representations from Transformers),它采用 Transformer 模型,可以双向学习句子中的上下文信息,从而在多项自然语言处理任务上取得了优异成绩。BERT 模型开创了 PLM 的新时代。 随后,BERT 模型的改进和扩展不断涌现。例如,XLNet 模型使用了无序自回归技术,进一步提升了模型的性能;RoBERTa 模型在训练过程中采用了更多的数据和更长的序列,进一步提高了模型的泛化性能;ELECTRA 模型则使用了对抗训练技术,让模型更加鲁棒。 除了上述模型外,还有一些针对特定任务的 PLM 模型,例如 GPT(Generative Pre-trained Transformer)模型和 T5(Text-to-Text Transfer Transformer)模型等。这些模型在各自的任务上表现出色,为实际应用带来了很大的便利。 然而,PLM 模型的训练需要消耗大量的计算资源和时间,对于普通用户来说很难实现。因此,各大厂商都提供了预训练的模型参数,供用户直接使用。这些预训练的模型参数可以快速地应用于各种自然语言处理任务,大大减少了模型训练的时间和资源消耗。 总之,PLM 模型是自然语言处理领域的重要进展,为各种自然语言处理任务提供了强有力的支持。随着技术的不断发展,PLM 模型的性能和应用场景还将不断拓展。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值