Leetcode566.Reshape the Matrix重塑矩阵

在MATLAB中,有一个非常有用的函数 reshape,它可以将一个矩阵重塑为另一个大小不同的新矩阵,但保留其原始数据。

给出一个由二维数组表示的矩阵,以及两个正整数r和c,分别表示想要的重构的矩阵的行数和列数。

重构后的矩阵需要将原始矩阵的所有元素以相同的行遍历顺序填充。

如果具有给定参数的reshape操作是可行且合理的,则输出新的重塑矩阵;否则,输出原始矩阵。

示例 1:

输入: nums = [[1,2], [3,4]] r = 1, c = 4 输出: [[1,2,3,4]] 解释: 行遍历nums的结果是 [1,2,3,4]。新的矩阵是 1 * 4 矩阵, 用之前的元素值一行一行填充新矩阵。

示例 2:

输入: nums = [[1,2], [3,4]] r = 2, c = 4 输出: [[1,2], [3,4]] 解释: 没有办法将 2 * 2 矩阵转化为 2 * 4 矩阵。 所以输出原矩阵。

注意:

  1. 给定矩阵的宽和高范围在 [1, 100]。
  2. 给定的 r 和 c 都是正数。

 

 

class Solution {
public:
    vector<vector<int> > matrixReshape(vector<vector<int> >& nums, int r, int c) {
        int R = nums.size();
        if(R == 0)
            return nums;
        int C = nums[0].size();
        if(r * c != R * C)
            return nums;
        vector<vector<int> >res;
        int cntR = 0;
        int cntC = 0;
        for(int i = 0; i < r; i++)
        {
            vector<int> temp;
            for(int j = 0; j < c; j++)
            {
                temp.push_back(nums[cntR][cntC]);
                if(cntC == C - 1)
                {
                    cntC = 0;
                    cntR++;
                }
                else
                {
                    cntC++;
                }
            }
            res.push_back(temp);
        }
        return res;
    }
};

 

内容概要:本文档详细介绍了一个利用Matlab实现Transformer-Adaboost结合的时间序列预测项目实例。项目涵盖Transformer架构的时间序列特征提取与建模,Adaboost集成方法用于增强预测性能,以及详细的模型设计思路、训练、评估过程和最终的GUI可视化。整个项目强调数据预处理、窗口化操作、模型训练及其优化(包括正则化、早停等手段)、模型融合策略和技术部署,如GPU加速等,并展示了通过多个评估指标衡量预测效果。此外,还提出了未来的改进建议和发展方向,涵盖了多层次集成学习、智能决策支持、自动化超参数调整等多个方面。最后部分阐述了在金融预测、销售数据预测等领域中的广泛应用可能性。 适合人群:具有一定编程经验的研发人员,尤其对时间序列预测感兴趣的研究者和技术从业者。 使用场景及目标:该项目适用于需要进行高质量时间序列预测的企业或机构,比如金融机构、能源供应商和服务商、电子商务公司。目标包括但不限于金融市场的波动性预测、电力负荷预估和库存管理。该系统可以部署到各类平台,如Linux服务器集群或云计算环境,为用户提供实时准确的预测服务,并支持扩展以满足更高频率的数据吞吐量需求。 其他说明:此文档不仅包含了丰富的理论分析,还有大量实用的操作指南,从项目构思到具体的代码片段都有详细记录,使用户能够轻松复制并改进这一时间序列预测方案。文中提供的完整代码和详细的注释有助于加速学习进程,并激发更多创新想法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值