一
121买卖股票的最佳时机
给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格。
如果你最多只允许完成一笔交易(即买入和卖出一支股票),设计一个算法来计算你所能获取的最大利润。
注意你不能在买入股票前卖出股票。
示例 1:
输入: [7,1,5,3,6,4] 输出: 5 解释: 在第 2 天(股票价格 = 1)的时候买入,在第 5 天(股票价格 = 6)的时候卖出,最大利润 = 6-1 = 5 。 注意利润不能是 7-1 = 6, 因为卖出价格需要大于买入价格。
示例 2:
输入: [7,6,4,3,1] 输出: 0 解释: 在这种情况下, 没有交易完成, 所以最大利润为 0。
动态规划:
第i的最大利润是max(i - 1天的最大利润,当天的价格-之前买的最便宜票)
第i天前最便宜的票是(i - 1天前最便宜的票,第i天票价格)
class Solution {
public:
int maxProfit(vector<int>& prices) {
if(prices.size() == 0)
return 0;
int buy = INT_MAX;
int sell = -INT_MAX;
for(int i = 0; i < prices.size(); i++)
{
buy = min(buy, prices[i]);
sell = max(sell, prices[i] - buy);
}
return sell;
}
};
二
给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你可以尽可能地完成更多的交易(多次买卖一支股票)。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
示例 1:
输入: [7,1,5,3,6,4] 输出: 7 解释: 在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。 随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6-3 = 3 。
示例 2:
输入: [1,2,3,4,5] 输出: 4 解释: 在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。 注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。 因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。
示例 3:
输入: [7,6,4,3,1] 输出: 0 解释: 在这种情况下, 没有交易完成, 所以最大利润为 0。
贪心:
如果第i的票价比i - 1的票价高,那么就肯定是赚的。
class Solution {
public:
int maxProfit(vector<int>& prices) {
int res = 0;
for(int i = 1; i < prices.size(); i++)
{
if(prices[i] > prices[i - 1])
res += prices[i] - prices[i - 1];
}
return res;
}
};
三
309. 最佳买卖股票时机含冷冻期
给定一个整数数组,其中第 i 个元素代表了第 i 天的股票价格 。
设计一个算法计算出最大利润。在满足以下约束条件下,你可以尽可能地完成更多的交易(多次买卖一支股票):
- 你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
- 卖出股票后,你无法在第二天买入股票 (即冷冻期为 1 天)。
示例:
输入: [1,2,3,0,2] 输出: 3 解释: 对应的交易状态为: [买入, 卖出, 冷冻期, 买入, 卖出]
class Solution {
public:
int maxProfit(vector<int>& prices)
{
if(prices.size() <= 1)
return 0;
vector<int> have(prices.size(), 0);
vector<int> nothave(prices.size(), 0);
have[0] = -prices[0];
have[1] = max(-prices[0], -prices[1]);
nothave[1] = max(0, prices[1] - prices[0]);
for(int i = 2; i < prices.size(); i++)
{
have[i] = max(have[i - 1], nothave[i - 2] - prices[i]);
nothave[i] = max(nothave[i - 1], have[i - 1] + prices[i]);
}
return nothave[prices.size() - 1];
}
};