决策树-缺失值和连续值处理及属性划分

       决策树是一个树结构(可以是二叉树或非二叉树),其每个非叶节点表示一个特征属性上的测试,每个分支代表这个特征属性在某个值域上的输出,而每个叶节点存放一个输出类别。使用决策树进行决策的过程就是从根节点开始,测试待分类项中相应的特征属性,并按照其值选择输出分支,直到到达叶子节点,将叶子节点存放的类别作为决策结果。

决策树学习通常包含这几个方面:特征选择、决策树生成、决策树剪枝、缺失值/异常值处理、决策树集成学习。

决策树-特征属性选择划分

决策树-缺失值和连续值处理及属性划分

决策树-不同的决策树模型对比

决策树-避免过拟合预剪枝和后剪枝对比区别

决策树-算法小结及常见问题


    

到目前为止我们仅讨论了基于离散属性来生成决策树,现实学习任务中常常遇到连续属性,以及数据中缺失问题。

目录

连续值处理

缺失值处理


连续值处理

基本思路:连续属性离散化,常见做法:二分法(这是C4.5决策树算法中采用的机制)。

对于连续属性a,我们可考察包括 n-1 个元素的候选划分集合(个属性值可形成 n-1 个候选点):

示例1:

示例2:

图片描述

对于数据集中的属性“密度”,决策树开始学习时,根节点包含的17个训练样本在该属性上取值均不同。我们先把“密度”这些值从小到大排序:
图片描述
根据上面计算 的公式,可得:

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值