vLLM vs Ollama

一、介绍

vLLM:VLLM(超大型语言模型)是SKYPILOT开发的推理优化框架,主要用于提升大语言模型在GPU上的运行效率。

Ollama:Ollama是一个本地大语言模型运行时环境,能简化开源AI模型的部署和使用流程。

二、特征对比

特征vLLMOIlama
推理速度(Inference Speed)极快,采用分页注意力(PagedAttention)优化速度快,但受硬件限制
内存效率(Memory Efficiency)出色,GPU 内存使用高效表现良好,但受本地内存限制
可扩展性(Scalability)为大规模人工智能部署设计针对本地或小规模使用优化 
安装难易度(Ease of Installation)需 Python 和 CUDA 设置简单
API 支持(API Support)支持 PyTorch、TensorFlow、REST API简单的命令行界面(CLI)和 API 
模型选择(Model Selection)可加载自定义模型。预打包模型 如: Llama/Mistral等
应用场景(Best Use Case)企业级应用部署本地实验 / 轻量级应用 
硬件要求(Ideal Hardware)高端GPU  如:A100/H100/RTX 4090消费级 GPU/M1/CPU/...
灵活性(Customization Flexibility)高,支持自定义微调低,预配置模型

三、应用场景

VLLM的最佳应用场景
  • 企业AI应用:如客户服务聊天机器人、AI驱动的搜索引擎等。
  • 云端高端GPU部署:适用于A100、H100、RTX 4090等高端GPU的云端大语言模型部署。
  • 模型微调与定制:方便进行模型微调和运行自定义模型。
  • 大上下文窗口需求:适用于对上下文窗口要求较高的应用。

不太适用的场景:个人笔记本电脑、日常AI实验。

Ollama的最佳应用场景
  • 本地设备运行:无需借助云资源,就能在Mac、Windows或Linux系统的设备上运行大语言模型。
  • 本地模型试验:不需要复杂的设置,就能在本地轻松试验各种模型。
  • 简易API集成:开发人员可以通过简单的API将AI功能集成到应用程序中。
  • 边缘计算应用:在边缘计算场景中表现出色。

不太适用的场景:大规模AI部署、高强度GPU计算任务。

文章来源:https://segmentfault.com/a/1190000046069903

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值