特征值和特征向量的理解 浅显易懂 肯定有收获


前言

本文将探讨线性代数中及其重要的两个概念:特征值与特征向量.


提示:(PS:下文中的矩阵A均认为是方阵) 。

一、矩阵是什么?

矩阵不单单是二维数组,它更重要的角色是映射: y ⃗ = A x ⃗ \vec{y}=A\vec{x} y =Ax
y ⃗ = A x ⃗ \vec{y}=A\vec{x} y =Ax 就相当于 y ⃗ = f ( x ⃗ ) \vec{y}=f(\vec{x}) y =f(x ),矩阵A是把向量 x ⃗ \vec{x} x 映射到向量 y ⃗ \vec{y} y 的一个函数,或者说,映射,算子。

从一般的角度看,这个映射无非就是矩阵乘向量,说得具体一点,就是n次的向量点积计算.(矩阵的一行乘上向量,并对结果向量的所有元素求和,就是一次点积)

错!实际上,这个映射本质是一个缩放操作.

二、举个例子

1、计算特征值与特征向量

提示:可以动动手指头算一算,参考这里

举一个简单的例子,矩阵 A = ( 4 − 2 3 − 1 ) A= \left( \begin{array}{ccc} 4 & -2 \\ 3 & -1 \end{array} \right) A=(4321)
它的特征值分别是2和1,特征向量是 ( 1 1 ) \left( \begin{array}{ccc} 1 \\ 1 \end{array} \right) (11) ( 2 3 ) \left( \begin{array}{ccc} 2 \\ 3 \end{array} \right) (23)

2、用特征向量表示任意向量

我们随便设向量 x ⃗ = ( 1 2 ) \vec{x}=\left( \begin{array}{ccc} 1 \\ 2 \end{array} \right) x =(12),显然结果 y ⃗ = A x ⃗ = ( 0 1 ) \vec{y}=A\vec{x}=\left( \begin{array}{ccc} 0 \\ 1 \end{array} \right) y =Ax =(01)


我们使用另一种方法计算,首先我们将 x ⃗ \vec{x} x 表示成特征向量 ( 1 1 ) \left(\begin{array}{ccc} 1 \\ 1 \end{array} \right) (11) ( 2 3 ) \left( \begin{array}{ccc} 2 \\ 3 \end{array} \right) (23)的线性组合,即:
x ⃗ = ( 1 2 ) = − 1 ∗ ( 1 1 ) + 1 ∗ ( 2 3 ) \vec{x}=\left( \begin{array}{ccc}1\\2\end{array} \right)=-1*\left( \begin{array}{ccc}1\\1\end{array} \right) + 1* \left( \begin{array}{ccc}2\\3\end{array} \right) x =(12)=1(11)+1(23)
然后,我们将特征值和对应的系数相乘,得到:
y ⃗ = − 1 ∗ 2 ∗ ( 1 1 ) + 1 ∗ 1 ∗ ( 2 3 ) = − 2 ∗ ( 1 1 ) + 1 ∗ ( 2 3 ) \vec{y}=-1*2*\left( \begin{array}{ccc}1\\1\end{array} \right) + 1*1* \left( \begin{array}{ccc}2\\3\end{array} \right)=-2*\left( \begin{array}{ccc}1\\1\end{array} \right) + 1* \left( \begin{array}{ccc}2\\3\end{array} \right) y =12(11)+11(23)=2(11)+1(23)
显然,如果你继续计算下去,你也会得到 y ⃗ = ( 0 1 ) \vec{y}=\left( \begin{array}{ccc}0\\1\end{array} \right) y =(01)
提示:好好领悟

特征值和特征向量的意义就在于此!
矩阵所充当的映射,实际上就是对特征向量的缩放,每个特征向量的缩放程度就是特征值.

因此,我们需要将向量 x ⃗ \vec{x} x 表示成特征向量的线性组合(相当于以特征向量为基),得到相应的特征向量的权重.

然后,每个权重与特征值相乘,就是这个映射最本质的缩放操作.

三、理解其他结论

基于这样的理解,我们可以很简单地解释很多结论。

1、对角化分解

对角化分解实际上就是我们解释特征值含义的过程。
A = P Λ P − 1 A=P\Lambda P^{-1} A=PΛP1,其中 P P P是由特征向量组成的矩阵, Λ Λ Λ是由特征值组成的对角矩阵。


在解释对角化分解之前,我们还要先解释矩阵的另一个含义.
对于 z ⃗ = P y ⃗ \vec{z}=P\vec{y} z =Py , 事实上矩阵P还有其他含义,比如在这里有转换基向量的含义:

  • y ⃗ \vec{y} y 是特征向量为基所表示的向量,上文 y ⃗ = − 2 ∗ ( 1 1 ) + 1 ∗ ( 2 3 ) \vec{y}=-2*\left( \begin{array}{ccc}1\\1\end{array} \right) + 1* \left( \begin{array}{ccc}2\\3\end{array} \right) y =2(11)+1(23),那么 y ⃗ \vec{y} y 在在特征向量为基的表示是 y ⃗ = ( − 2 1 ) \vec{y}=\left( \begin{array}{ccc}-2\\1\end{array} \right) y =(21)
  • z ⃗ \vec{z} z 则是坐标轴为基所表示的向量,假如 z ⃗ \vec{z} z 的表示为 z ⃗ = ( 0 1 ) \vec{z}=\left( \begin{array}{ccc}0\\1\end{array} \right) z =(01),相当于 z ⃗ = 0 ∗ ( 1 0 ) + 1 ∗ ( 0 1 ) \vec{z}=0*\left( \begin{array}{ccc}1\\0\end{array} \right) + 1* \left( \begin{array}{ccc}0\\1\end{array} \right) z =0(10)+1(01)
  • 那么 z ⃗ = P y ⃗ \vec{z}=P\vec{y} z =Py 的含义就是把一个向量从特征向量为基的表示 y ⃗ \vec{y} y ,转变成以坐标轴为基的表示 z ⃗ \vec{z} z .
    相应, y ⃗ = P − 1 x ⃗ \vec{y}=P^{-1}\vec{x} y =P1x 的含义则相反,是把一个向量从坐标轴为基的表示 x ⃗ \vec{x} x ,转变成以特征向量为基的表示 y ⃗ \vec{y} y .

那么 y ⃗ = A x ⃗ = P Λ P − 1 x ⃗ \vec{y}=A\vec{x}=P\Lambda P^{-1} \vec{x} y =Ax =PΛP1x ,我们就可以解释了。
首先, P − 1 x ⃗ P^{-1}\vec{x} P1x 是将 x ⃗ \vec{x} x 转变成用特征向量表示,上文 x ⃗ = ( 1 2 ) = − 1 ∗ ( 1 1 ) + 1 ∗ ( 2 3 ) \vec{x}=\left( \begin{array}{ccc}1\\2\end{array} \right)=-1*\left( \begin{array}{ccc}1\\1\end{array} \right) + 1* \left( \begin{array}{ccc}2\\3\end{array} \right) x =(12)=1(11)+1(23),就是把 ( 1 2 ) \left( \begin{array}{ccc} 1 \\ 2 \end{array} \right) (12)变成了 ( − 1 1 ) \left( \begin{array}{ccc} -1 \\ 1 \end{array} \right) (11)
然后 Λ P − 1 x ⃗ \Lambda P^{-1} \vec{x} ΛP1x ,就是对应的特征值与权重作乘法,得到 ( − 2 1 ) \left( \begin{array}{ccc} -2 \\ 1\end{array} \right) (21)
最后 y ⃗ = P Λ P − 1 x ⃗ \vec{y}=P\Lambda P^{-1} \vec{x} y =PΛP1x ,就是把 ( − 2 1 ) \left( \begin{array}{ccc} -2 \\ 1\end{array} \right) (21)重新转换成坐标轴为基的表示,得到 ( 0 1 ) \left( \begin{array}{ccc} 0 \\ 1\end{array} \right) (01)

2、矩阵的特征值分别是原矩阵特征值的倒数

是因为原矩阵放大了2倍,逆矩阵就要相应地缩小到原本的1/2.

当然,特征向量要保持对应,因此这也解释了为什么逆矩阵的特征向量和原矩阵一样

3、特征值为0,意味着不可逆

参考第2点,0没有倒数.

4、通过解 A x ⃗ = λ x ⃗ A\vec{x}=\lambda \vec{x} Ax =λx 来寻找特征值

显然,在这里λ是特征值, x ⃗ \vec{x} x 是特征向量.

x ⃗ \vec{x} x 变成以A的特征向量为基来表示的话,那么权重肯定只有1个1,其他都为0,那个1对应的特征向量当然是 x ⃗ \vec{x} x 本身.

这个时候进行缩放,那么只有 x ⃗ \vec{x} x 的权重被缩放了,其他特征向量的权重都是0,0乘任何数为0.

那么,A x ⃗ \vec{x} x 的结果就相当于 λ x ⃗ \lambda\vec{x} λx 了,因为 λ x ⃗ \lambda\vec{x} λx 就是 x ⃗ \vec{x} x 作了相应的缩放,缩放因子就是特征值λ.

  • 12
    点赞
  • 74
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值