求(1-1/n)^n,n->∞的极限

证明: lim ⁡ n → ∞ ( 1 − 1 n ) n = 1 e \lim\limits_{n\rightarrow\infty}({1-\frac{1} {n}})^n=\frac{1}{e} nlim(1n1)n=e1
解:令 y = ( 1 − 1 n ) n y=({1-\frac{1}{n}})^n y=(1n1)n

l n y = n l n ( 1 − 1 / n ) lny=nln(1-1/n) lny=nln(11/n)
t = 1 / n t=1/n t=1/n n → ∞ n\rightarrow\infty n n → 0 n\rightarrow 0 n0

lim ⁡ n → ∞ n l n ( 1 − 1 / n ) = lim ⁡ t → 0 l n ( 1 − t ) t \lim\limits_{n\rightarrow\infty}nln(1-1/n)=\lim\limits_{t\rightarrow 0}\frac{ln(1-t)}{t} nlimnln(11/n)=t0limtln(1t)

由洛必达法则:
lim ⁡ n → ∞ n l n ( 1 − 1 / n ) = lim ⁡ t → 0 l n ( 1 − t ) ′ t ′ = lim ⁡ t → 0 1 t − 1 = − 1 \lim\limits_{n\rightarrow\infty}nln(1-1/n)=\lim\limits_{t\rightarrow 0}\frac{ln(1-t)^{'}}{t^{'}}=\lim\limits_{t\rightarrow 0}\frac{1}{t-1}=-1 nlimnln(11/n)=t0limtln(1t)=t0limt11=1

所以 lim ⁡ n → ∞ ( 1 − 1 n ) n = 1 e \lim\limits_{n\rightarrow\infty}({1-\frac{1}{n}})^n=\frac{1}{e} nlim(1n1)n=e1

  • 8
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 3
    评论
### 回答1: 首先,我们可以观察到指数部分在 $n$ 趋近于无穷大时会迅速增长,因此可以猜测分母中的 $\ln(1+e^n)^{1/n}$ 会趋近于 $1$。 为了证明这一点,我们可以将 $\ln(1+e^n)^{1/n}$ 写成 $e^{\frac{\ln(1+e^n)}{n}}$ 的形式。然后,我们可以使用洛必达法则来解 $\lim_{n \to \infty} \frac{\ln(1+e^n)}{n}$: $$ \lim_{n \to \infty} \frac{\ln(1+e^n)}{n} = \lim_{n \to \infty} \frac{\frac{e^n}{1+e^n}}{1} = 1 $$ 因此,我们有 $\lim_{n \to \infty} e^{\frac{\ln(1+e^n)}{n}} = e$. 因此,原式的极限为 $3/e$。 ### 回答2: 我们来极限 N~∞ 3/ln(1 + e^n)^(1/n)。首先,我们将 ln(1 + e^n)展开成级数形式。 ln(1 + e^n) = e^n - 1/2(e^n)^2 + 1/3(e^n)^3 - ... 然后,我们将展开后的级数代入极限的表达式中。 lim (N->∞) 3/ln(1 + e^n)^(1/n) = lim (N->∞) 3/((e^n - 1/2(e^n)^2 + 1/3(e^n)^3 - ...)^(1/n) 接下来,我们可以利用指数函数的幂指数的性质:(a^b)^(1/c) = a^(b/c)。 lim (N->∞) 3/ln(1 + e^n)^(1/n) = lim (N->∞) 3/((e^n)^(1/n) - 1/2((e^n)^(2/n)) + 1/3((e^n)^(3/n)) - ...) 由幂指数的性质,我们知道 (e^n)^(1/n) = e^((n/n)) = e。同理可得,(e^n)^(2/n) = e^2,(e^n)^(3/n) = e^3。 lim (N->∞) 3/((e^n)^(1/n) - 1/2((e^n)^(2/n)) + 1/3((e^n)^(3/n)) - ...) = 3/(e - 1/2e^2 + 1/3e^3 - ...) 我们可以发现,上述表达式中的分母是一个几何级数,它的通项为 1/n * e^n。几何级数的和公式为 a/(1 - r),其中 a 是首项,r 是公比。在这个情况下,a = 1/e,r = 1/e。 所以,几何级数的和为 1/e / (1 - 1/e) = 1。 因此,极限 N~∞ 3/ln(1 + e^n)^(1/n) 的值为 3/1 = 3。 ### 回答3: 要解该极限: lim (n→∞) [3/ln(1 + e^n)^(1/n)] 由于指数函数是无穷增长的,当n趋向于无穷时,e^n也趋向于无穷。因此,我们可以考虑这个问题: lim (n→∞) [3/ln(e^n)^(1/n)] 根据对数函数的性质,ln(e)等于1。我们可以简化表达式为: lim (n→∞) [3/ln(e^(n/n))] 根据指数的性质,e^(n/n)等于e。我们继续简化表达式为: lim (n→∞) [3/ln(e)] 再次利用对数函数的性质,ln(e)等于1。我们得到: lim (n→∞) [3/1] 最终,我们得到这个极限的结果为3。 因此,N~∞时,3/ln(1 + e^n)^(1/n)的极限为3。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

irober

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值