求(1-1/n)^n,n->∞的极限

证明: lim ⁡ n → ∞ ( 1 − 1 n ) n = 1 e \lim\limits_{n\rightarrow\infty}({1-\frac{1} {n}})^n=\frac{1}{e} nlim(1n1)n=e1
解:令 y = ( 1 − 1 n ) n y=({1-\frac{1}{n}})^n y=(1n1)n

l n y = n l n ( 1 − 1 / n ) lny=nln(1-1/n) lny=nln(11/n)
t = 1 / n t=1/n t=1/n n → ∞ n\rightarrow\infty n n → 0 n\rightarrow 0 n0

lim ⁡ n → ∞ n l n ( 1 − 1 / n ) = lim ⁡ t → 0 l n ( 1 − t ) t \lim\limits_{n\rightarrow\infty}nln(1-1/n)=\lim\limits_{t\rightarrow 0}\frac{ln(1-t)}{t} nlimnln(11/n)=t0limtln(1t)

由洛必达法则:
lim ⁡ n → ∞ n l n ( 1 − 1 / n ) = lim ⁡ t → 0 l n ( 1 − t ) ′ t ′ = lim ⁡ t → 0 1 t − 1 = − 1 \lim\limits_{n\rightarrow\infty}nln(1-1/n)=\lim\limits_{t\rightarrow 0}\frac{ln(1-t)^{'}}{t^{'}}=\lim\limits_{t\rightarrow 0}\frac{1}{t-1}=-1 nlimnln(11/n)=t0limtln(1t)=t0limt11=1

所以 lim ⁡ n → ∞ ( 1 − 1 n ) n = 1 e \lim\limits_{n\rightarrow\infty}({1-\frac{1}{n}})^n=\frac{1}{e} nlim(1n1)n=e1

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

irober

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值