两者代价函数形式相同,区别在于Generative需要对数据的分布进行假设(正态or其他),从而计算μ和Σ,再计算w和b,最后得到P(C1|x),而Discriminative直接根据最大似然函数梯度下降求得W和b
若data较少时(label有问题时),Generative可能较好(脑补),受data噪声影响较小
随着data增加,Discriminative的error会逐渐减少
两者代价函数形式相同,区别在于Generative需要对数据的分布进行假设(正态or其他),从而计算μ和Σ,再计算w和b,最后得到P(C1|x),而Discriminative直接根据最大似然函数梯度下降求得W和b
若data较少时(label有问题时),Generative可能较好(脑补),受data噪声影响较小
随着data增加,Discriminative的error会逐渐减少