李宏毅机器学习笔记Generative VS Discriminative

本文探讨了生成式(Generative)和判别式(Discriminative)模型在数据稀缺和噪声环境下各自的优势。生成模型假设数据分布,适用于标签问题的场景;而判别模型直接优化似然,随着数据增多其误差减小。
摘要由CSDN通过智能技术生成

两者代价函数形式相同,区别在于Generative需要对数据的分布进行假设(正态or其他),从而计算μ和Σ,再计算w和b,最后得到P(C1|x),而Discriminative直接根据最大似然函数梯度下降求得W和b

若data较少时(label有问题时),Generative可能较好(脑补),受data噪声影响较小

随着data增加,Discriminative的error会逐渐减少

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值