矩阵间的关系总结

矩阵间的关系有三种:等价,相似,合同,前者依次包含后者。

一、定义:

矩阵等价:对于任意矩阵A,如果存在可逆矩阵P和Q,使得PAQ=B,则说A与B等价,记为A~B。

矩阵相似:对于任意矩阵A,如果存在可逆矩阵P,使得inv(P)AP=B,则说A与B相似,记为A~B。

矩阵合同:对于任意矩阵A,如果存在可逆矩阵P,使得Transpose(P)AP=B,则说A与B合同。

二、性质:

等价矩阵:

a).具有相同的秩;b).具有相同的相似标准型;c).列(行)向量具有相同的相关性;d).任意矩阵都等价于它的标准型

相似矩阵:

a).具有相同的特征值;b).具有相同的行列式;c).迹相等;d).具有相同的特征多项式

三、相似对角化

对于矩阵A,如果存在可逆矩阵P,使得inv(P)AP为对角矩阵,则称A可相似对角化。如果A满足如下条件中的一个,则A可相似对角化:

a).矩阵A有n个线性无关的特征向量;

b).矩阵A有n个不相同的特征值;

c).矩阵A的k重特征值对应有k个特征向量。

**注意:A能否对角化与A是否可逆或A的秩之间没有关系,如A=[2,2;2 2]为实对称矩阵,一定可以对角化,但秩为1,它不可逆。

四、两种重要的特殊矩阵

正交矩阵:定义:transpose(A)*A=A*transpose(A)=I。正交矩阵具有如下的性质:

a). transpose(A)=inv(A);

b). det(A)=1或者det(A)= —1;

c). 如果A和B都是正交矩阵,则AB和BA都是正交矩阵;

d). A的行(列)向量组为标准正交向量组。

e).transpose(A)*A=A*transpose(A)=I

f).正交变换不改变内积,y=Ax,则(y1,y2)=(Ax1,Ax2)=(x1,x2),因此也就不改变向量的长度和夹角,所以正交变

换可以保持图形不变。

对称矩阵:定义:transpose(A)=A。对称矩阵具有如下性质:

a).如果A和B都是对称矩阵,则A+B为对称矩阵;AB对称的充要条件是AB=BA,即A,

B可交换;

b).任意矩阵A,).transpose(A)*A和A*transpose(A)都是对称矩阵;

c).对于实对称矩阵,有如下特殊性质:

*特征值全为实数;

**不同特征值对应得特征向量彼此正交;

***一定存在正交矩阵C,使得transpose(C)*A*C=inv(C)*A*C为对角矩阵,且对角元为

A的特征值,而C的列向量即为A的特征向量。

http://hi.baidu.com/tuenmei/blog/item/637f31326377914dac4b5fae.html

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值