数学和软件(3)——从勾股定理说起

勾股定理是大家都很熟悉的,课本上也有证明。
从一般知识获得的角度,事情就到此为止了,接下来就是如何应用这个知识了。

然而从数学研究的角度,有很多个方向可以不断深入:
1、是否有其他的证明方法?通过不同的证明方法的讨论可以获得更多的思路

2、该定理是否“放之四海而皆准”?是否有隐含的“必要条件”(勾股定理只在欧氏空间中成立,在非欧空间中不成立),如果必要条件不满足,那么是否有同样的结果?

3、该定理是否可以进一步推广?(费尔马大定理是该定理的一种变化的n阶推广)

……

转换到软件开发领域,第1点对应的就是重构,第二点对应的是需求获取中的完备性,第三点是软件开发较少考虑的,属于业务分析的前瞻性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值