会员分析(Excel)+可视化

这篇博客详细介绍了如何使用Excel进行会员数据分析,包括会员存量增量分析、等级分布可视化、会员线上线下渠道对比、区域平均店铺数量、地区店均会员分析、会销比计算和可视化、会员连带率和复购率的计算。通过对鞋店会员数据的处理和可视化,揭示了会员行为和运营效果的深入洞察。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.会员存量增量分析

按月增量分析
先看下部分数据(数据来源于某鞋店的会员信息)
在这里插入图片描述
新增注册年月列(从注册时间扣出年份和月份),使用=TEXT(位置,“yyyymm”)

在这里插入图片描述

插入数据透视表并新建工作表
在这里插入图片描述
可以看到从2017年9月到2019年3月每月新增的会员数量,2017年8月的数据应该是之前统计的总体会员数量.
在这里插入图片描述
插入组合图
在这里插入图片描述
数据可视化.

2,增量会员等级分布可视化

在这里插入图片描述

3,白银黄金会员占比比较

Excel中进行词频共现矩阵分析通常涉及以下几个步骤,这里以Python配合pandas和matplotlib库为例,因为Excel本身不具备直接处理大规模数据集或复杂统计的功能: 1. **读取Excel文件**: 使用`pandas`库中的`read_excel`函数导入Excel文件的数据: ```python import pandas as pd data = pd.read_excel('your_file.xlsx', sheet_name='Sheet1') # 更改sheet_name为你需要的标签 column_to_analyze = data['Column_Name'] # 替换Column_Name为你想要分析的列名 ``` 2. **数据预处理**: 清洗数据,例如去除特殊字符、空格,将文字转为小写等: ```python column_to_analyze = column_to_analyze.str.lower().str.replace('[^\w\s]', '').str.strip() ``` 3. **分词与计词频**: 对一列内容进行分词,然后使用`Counter`计算词频: ```python from collections import Counter word_counts = Counter(column_to_analyze) ``` 4. **构建共现矩阵**: 对于词频共现,我们可以简单地检查相邻词汇的出现情况,但这通常是通过更复杂的算法如TF-IDF或n-gram实现的,这里仅作基本示例: ```python pairs = zip(column_to_analyze[:-1], column_to_analyze[1:]) cooccurrence_matrix = {pair: word_counts[pair] for pair in pairs if pair[0] in word_counts and pair[1] in word_counts} ``` 5. **可视化**: 使用`matplotlib`或其他绘图库(如seaborn或networkx)绘制词频共现矩阵: ```python import matplotlib.pyplot as plt matrix_df = pd.DataFrame.from_dict(cooccurrence_matrix, orient='index', columns=['Co-occurrence']) matrix_df.plot(kind='barh') plt.title('Word Co-occurrence Matrix') plt.xlabel('Frequency') plt.ylabel('Words') plt.show() ``` 6. **保存结果**: 最后,你可以将矩阵数据或者图表导出成图片或CSV。 请注意,在实际操作中,如果你的数据包含大量数据,上述方法可能会运行较慢,可以考虑使用专门用于大数据的工具,比如Spark或Dask。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值