求若当标准型的变换矩阵

博客围绕矩阵 A 展开,先求出其特征多项式和特征值,判断 A 不相似于对角矩阵,而是相似于若当标准型 J。接着通过一系列计算,求出变换矩阵 P 使得 A = PJP⁻¹,包括确定 p1、p2、p3 的值,并进行了验证。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

已知
A = [ 2 0 0 1 4 0 1 0 2 ] A = \begin{bmatrix} 2 & 0 &0 \\ 1 & 4 & 0\\ 1 & 0 & 2 \end{bmatrix} A=211040002
特征多项式为:
∣ λ I − A ∣ = ∣ λ − 2 0 0 − 1 λ − 4 0 − 1 0 λ − 2 ∣ = ( λ − 2 ) 2 ( λ − 4 ) = 0 |\lambda I - A| = \begin{vmatrix} \lambda -2 & 0 &0 \\ -1 & \lambda -4 & 0\\ -1 & 0 & \lambda -2 \end{vmatrix} = (\lambda - 2)^2(\lambda -4)=0 λIA=λ2110λ4000λ2=(λ2)2(λ4)=0
求出特征值: λ = 2 (二重) , 4 \lambda = 2\text{(二重)}, 4 λ=2(二重),4.

但是显然 A A A 不会相似于对角矩阵:
[ 2 0 0 0 4 0 0 0 2 ] \begin{bmatrix} 2 & 0 &0 \\ 0 & 4 & 0\\ 0 & 0 & 2 \end{bmatrix} 200040002
因而只能是相似于若当标准型:
J = [ 2 0 0 1 2 0 0 0 4 ] J = \begin{bmatrix} 2 & 0 &0 \\ 1 & 2 & 0\\ 0 & 0 & 4 \end{bmatrix} J=210020004
注意:若当标准型的标准求法需要用到 λ \lambda λ-多项式(或 λ \lambda λ-矩阵),参见高等代数教材。但在这里掐指一算就知道了,因为只有 2 是二重根

下面要求变换矩阵 P P P 使得:
A = P J P − 1 ⇔ A P = P J ⇔ A [ p 1 p 2 p 3 ] = [ p 1 p 2 p 3 ] [ 2 0 0 1 2 0 0 0 4 ] ⇔ { A p 1 = 2 p 1 + p 2 A p 2 = 2 p 2 A p 3 = 4 p 3 ⇔ { ( A − 2 I ) p 1 = p 2 ⇒ ( A − 2 I ) 2 p 1 = 0 ( A − 2 I ) p 2 = 0 ( A − 4 I ) p 3 = 0 \begin{aligned} &A = PJP^{-1} \\ \Leftrightarrow& AP = PJ \\ \Leftrightarrow& A \begin{bmatrix}p_1 & p_2 & p_3\end{bmatrix} = \begin{bmatrix}p_1 & p_2 & p_3\end{bmatrix} \begin{bmatrix} 2 & 0 &0 \\ 1 & 2 & 0\\ 0 & 0 & 4 \end{bmatrix} \\ \Leftrightarrow& \begin{cases} A p_1 = 2p_1 + p_2 \\ A p_2 = 2p_2 \\ A p_3 = 4p_3 \end{cases} \\ \Leftrightarrow& \begin{cases} (A - 2I) p_1 = p_2 \Rightarrow (A - 2I)^2 p_1 = 0\\ (A-2I) p_2 = 0 \\ (A-4I) p_3 = 0 \end{cases} \end{aligned} A=PJP1AP=PJA[p1p2p3]=[p1p2p3]210020004Ap1=2p1+p2Ap2=2p2Ap3=4p3(A2I)p1=p2(A2I)2p1=0(A2I)p2=0(A4I)p3=0
p 3 p_3 p3 A − 4 I A-4I A4I 的核空间,很好求:
( A − 4 I ) p 3 = [ − 2 0 0 1 0 0 1 0 − 2 ] p 3 = 0 ⇒ p 3 = [ 0 1 0 ] (A-4I)p_3 = \begin{bmatrix} -2 & 0 &0 \\ 1 & 0 & 0\\ 1 & 0 & -2 \end{bmatrix} p_3 = 0 \Rightarrow p_3= \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} (A4I)p3=211000002p3=0p3=010
p 2 p_2 p2 A − 2 I A-2I A2I 的核空间; p 1 p_1 p1 ( A − 2 I ) 2 (A-2I)^2 (A2I)2 的核空间,但是不在 A − 2 I A-2I A2I 的核空间

这该怎么求呢?

先求 p 1 p_1 p1:
( A − 2 I ) 2 p 1 = [ 0 0 0 1 2 0 1 0 0 ] 2 p 1 = [ 0 0 0 2 4 0 0 0 0 ] p 1 = 0 (A-2I)^2p_1 = \begin{bmatrix} 0 & 0 &0 \\ 1 &2 & 0\\ 1 & 0 &0 \end{bmatrix}^2 p_1 = \begin{bmatrix} 0 & 0 &0 \\ 2 &4 & 0\\ 0 & 0 &0 \end{bmatrix} p_1 =0 (A2I)2p1=0110200002p1=020040000p1=0 ⇒ p 1 = [ 0 0 1 ] 或者 [ − 2 1 0 ] \Rightarrow p_1= \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \text{或者} \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix} p1=001或者210
由于前者 [ 0 0 1 ] \displaystyle \begin{bmatrix}0 \\0 \\1 \end{bmatrix} 001 A − 2 I A-2I A2I 的核空间,故舍弃,所以 p 1 = [ − 2 1 0 ] \displaystyle p_1 = \begin{bmatrix} -2 \\1 \\0 \end{bmatrix} p1=210
所以
p 2 = ( A − 2 I ) p 1 = [ 0 0 0 1 2 0 1 0 0 ] [ − 2 1 0 ] = [ 0 0 − 2 ] p_2 = (A-2I)p_1 = \begin{bmatrix} 0 & 0 &0 \\ 1 &2 & 0 \\ 1 & 0 &0 \end{bmatrix} \begin{bmatrix} -2 \\1 \\0 \end{bmatrix} = \begin{bmatrix} 0 \\0 \\-2 \end{bmatrix} p2=(A2I)p1=011020000210=002
至此, P P P 矩阵求出

可以验证:
A P = [ 2 0 0 1 4 0 1 0 2 ] [ − 2 0 0 1 0 1 0 − 2 0 ] = [ − 4 0 0 2 0 4 − 2 − 4 0 ] AP = \begin{bmatrix} 2 & 0 &0 \\ 1 & 4 & 0\\ 1 & 0 & 2 \end{bmatrix} \begin{bmatrix} -2 & 0 &0 \\ 1 & 0 & 1\\ 0 & -2 & 0 \end{bmatrix} = \begin{bmatrix} -4 & 0 &0 \\ 2 & 0 & 4\\ -2 & -4 & 0 \end{bmatrix} AP=211040002210002010=422004040
P J = [ − 2 0 0 1 0 1 0 − 2 0 ] [ 2 0 0 1 2 0 0 0 4 ] = [ − 4 0 0 2 0 4 − 2 − 4 0 ] = A P PJ = \begin{bmatrix} -2 & 0 &0 \\ 1 & 0 & 1\\ 0 & -2 & 0 \end{bmatrix} \begin{bmatrix} 2 & 0 &0 \\ 1 & 2 & 0\\ 0 & 0& 4 \end{bmatrix} = \begin{bmatrix} -4 & 0 &0 \\ 2 & 0 & 4\\ -2 & -4 & 0 \end{bmatrix} = AP PJ=210002010210020004=422004040=AP
A = P J P − 1 A = PJP^{-1} A=PJP1

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

颹蕭蕭

白嫖?

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值