已知
A
=
[
2
0
0
1
4
0
1
0
2
]
A = \begin{bmatrix} 2 & 0 &0 \\ 1 & 4 & 0\\ 1 & 0 & 2 \end{bmatrix}
A=⎣⎡211040002⎦⎤
特征多项式为:
∣
λ
I
−
A
∣
=
∣
λ
−
2
0
0
−
1
λ
−
4
0
−
1
0
λ
−
2
∣
=
(
λ
−
2
)
2
(
λ
−
4
)
=
0
|\lambda I - A| = \begin{vmatrix} \lambda -2 & 0 &0 \\ -1 & \lambda -4 & 0\\ -1 & 0 & \lambda -2 \end{vmatrix} = (\lambda - 2)^2(\lambda -4)=0
∣λI−A∣=∣∣∣∣∣∣λ−2−1−10λ−4000λ−2∣∣∣∣∣∣=(λ−2)2(λ−4)=0
求出特征值:
λ
=
2
(二重)
,
4
\lambda = 2\text{(二重)}, 4
λ=2(二重),4.
但是显然
A
A
A 不会相似于对角矩阵:
[
2
0
0
0
4
0
0
0
2
]
\begin{bmatrix} 2 & 0 &0 \\ 0 & 4 & 0\\ 0 & 0 & 2 \end{bmatrix}
⎣⎡200040002⎦⎤
因而只能是相似于若当标准型:
J
=
[
2
0
0
1
2
0
0
0
4
]
J = \begin{bmatrix} 2 & 0 &0 \\ 1 & 2 & 0\\ 0 & 0 & 4 \end{bmatrix}
J=⎣⎡210020004⎦⎤
注意:若当标准型的标准求法需要用到
λ
\lambda
λ-多项式(或
λ
\lambda
λ-矩阵),参见高等代数教材。但在这里掐指一算就知道了,因为只有 2 是二重根
下面要求变换矩阵
P
P
P 使得:
A
=
P
J
P
−
1
⇔
A
P
=
P
J
⇔
A
[
p
1
p
2
p
3
]
=
[
p
1
p
2
p
3
]
[
2
0
0
1
2
0
0
0
4
]
⇔
{
A
p
1
=
2
p
1
+
p
2
A
p
2
=
2
p
2
A
p
3
=
4
p
3
⇔
{
(
A
−
2
I
)
p
1
=
p
2
⇒
(
A
−
2
I
)
2
p
1
=
0
(
A
−
2
I
)
p
2
=
0
(
A
−
4
I
)
p
3
=
0
\begin{aligned} &A = PJP^{-1} \\ \Leftrightarrow& AP = PJ \\ \Leftrightarrow& A \begin{bmatrix}p_1 & p_2 & p_3\end{bmatrix} = \begin{bmatrix}p_1 & p_2 & p_3\end{bmatrix} \begin{bmatrix} 2 & 0 &0 \\ 1 & 2 & 0\\ 0 & 0 & 4 \end{bmatrix} \\ \Leftrightarrow& \begin{cases} A p_1 = 2p_1 + p_2 \\ A p_2 = 2p_2 \\ A p_3 = 4p_3 \end{cases} \\ \Leftrightarrow& \begin{cases} (A - 2I) p_1 = p_2 \Rightarrow (A - 2I)^2 p_1 = 0\\ (A-2I) p_2 = 0 \\ (A-4I) p_3 = 0 \end{cases} \end{aligned}
⇔⇔⇔⇔A=PJP−1AP=PJA[p1p2p3]=[p1p2p3]⎣⎡210020004⎦⎤⎩⎪⎨⎪⎧Ap1=2p1+p2Ap2=2p2Ap3=4p3⎩⎪⎨⎪⎧(A−2I)p1=p2⇒(A−2I)2p1=0(A−2I)p2=0(A−4I)p3=0
p
3
p_3
p3 在
A
−
4
I
A-4I
A−4I 的核空间,很好求:
(
A
−
4
I
)
p
3
=
[
−
2
0
0
1
0
0
1
0
−
2
]
p
3
=
0
⇒
p
3
=
[
0
1
0
]
(A-4I)p_3 = \begin{bmatrix} -2 & 0 &0 \\ 1 & 0 & 0\\ 1 & 0 & -2 \end{bmatrix} p_3 = 0 \Rightarrow p_3= \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}
(A−4I)p3=⎣⎡−21100000−2⎦⎤p3=0⇒p3=⎣⎡010⎦⎤
p
2
p_2
p2 在
A
−
2
I
A-2I
A−2I 的核空间;
p
1
p_1
p1 在
(
A
−
2
I
)
2
(A-2I)^2
(A−2I)2 的核空间,但是不在
A
−
2
I
A-2I
A−2I 的核空间
这该怎么求呢?
先求
p
1
p_1
p1:
(
A
−
2
I
)
2
p
1
=
[
0
0
0
1
2
0
1
0
0
]
2
p
1
=
[
0
0
0
2
4
0
0
0
0
]
p
1
=
0
(A-2I)^2p_1 = \begin{bmatrix} 0 & 0 &0 \\ 1 &2 & 0\\ 1 & 0 &0 \end{bmatrix}^2 p_1 = \begin{bmatrix} 0 & 0 &0 \\ 2 &4 & 0\\ 0 & 0 &0 \end{bmatrix} p_1 =0
(A−2I)2p1=⎣⎡011020000⎦⎤2p1=⎣⎡020040000⎦⎤p1=0
⇒
p
1
=
[
0
0
1
]
或者
[
−
2
1
0
]
\Rightarrow p_1= \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \text{或者} \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}
⇒p1=⎣⎡001⎦⎤或者⎣⎡−210⎦⎤
由于前者
[
0
0
1
]
\displaystyle \begin{bmatrix}0 \\0 \\1 \end{bmatrix}
⎣⎡001⎦⎤ 在
A
−
2
I
A-2I
A−2I 的核空间,故舍弃,所以
p
1
=
[
−
2
1
0
]
\displaystyle p_1 = \begin{bmatrix} -2 \\1 \\0 \end{bmatrix}
p1=⎣⎡−210⎦⎤
所以
p
2
=
(
A
−
2
I
)
p
1
=
[
0
0
0
1
2
0
1
0
0
]
[
−
2
1
0
]
=
[
0
0
−
2
]
p_2 = (A-2I)p_1 = \begin{bmatrix} 0 & 0 &0 \\ 1 &2 & 0 \\ 1 & 0 &0 \end{bmatrix} \begin{bmatrix} -2 \\1 \\0 \end{bmatrix} = \begin{bmatrix} 0 \\0 \\-2 \end{bmatrix}
p2=(A−2I)p1=⎣⎡011020000⎦⎤⎣⎡−210⎦⎤=⎣⎡00−2⎦⎤
至此,
P
P
P 矩阵求出
可以验证:
A
P
=
[
2
0
0
1
4
0
1
0
2
]
[
−
2
0
0
1
0
1
0
−
2
0
]
=
[
−
4
0
0
2
0
4
−
2
−
4
0
]
AP = \begin{bmatrix} 2 & 0 &0 \\ 1 & 4 & 0\\ 1 & 0 & 2 \end{bmatrix} \begin{bmatrix} -2 & 0 &0 \\ 1 & 0 & 1\\ 0 & -2 & 0 \end{bmatrix} = \begin{bmatrix} -4 & 0 &0 \\ 2 & 0 & 4\\ -2 & -4 & 0 \end{bmatrix}
AP=⎣⎡211040002⎦⎤⎣⎡−21000−2010⎦⎤=⎣⎡−42−200−4040⎦⎤
P
J
=
[
−
2
0
0
1
0
1
0
−
2
0
]
[
2
0
0
1
2
0
0
0
4
]
=
[
−
4
0
0
2
0
4
−
2
−
4
0
]
=
A
P
PJ = \begin{bmatrix} -2 & 0 &0 \\ 1 & 0 & 1\\ 0 & -2 & 0 \end{bmatrix} \begin{bmatrix} 2 & 0 &0 \\ 1 & 2 & 0\\ 0 & 0& 4 \end{bmatrix} = \begin{bmatrix} -4 & 0 &0 \\ 2 & 0 & 4\\ -2 & -4 & 0 \end{bmatrix} = AP
PJ=⎣⎡−21000−2010⎦⎤⎣⎡210020004⎦⎤=⎣⎡−42−200−4040⎦⎤=AP
故
A
=
P
J
P
−
1
A = PJP^{-1}
A=PJP−1