周期系统及自治系统下关于渐进稳定性的Lyapunov逆定理【latex】

\documentclass[a4paper,11pt]{ctexart}
\title{读书报告}
\author{itnerd}
\date{\today}

\usepackage{algorithm}
\usepackage{algorithmic}
\usepackage{geometry}
\usepackage{cite}
\usepackage{latexsym}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{amsfonts}
\usepackage{caption}
\usepackage{graphicx, subfig}
\usepackage{listings}
\usepackage{xcolor} 
\newtheorem{definition}{定义}
\newtheorem{theorm}{定理}
\newtheorem{proof}{证明}

\CTEXsetup[name={第,节}]{section}
\CTEXsetup[beforeskip = {20bp plus 1ex minus 0.2ex}]{section}
\CTEXsetup[afterskip = {6bp plus 0.2ex}]{section}
\CTEXsetup[format = {\zihao{4}\bfseries}]{section}
\CTEXsetup[name={第,小节}]{subsection}
\CTEXsetup[beforeskip = {12bp plus 1ex minus 0.2ex}]{subsection}
\CTEXsetup[afterskip = {6bp plus 0.2ex}]{subsection}
\CTEXsetup[format = {\fontsize{13bp}{15.6bp}\selectfont\bfseries}]{subsection}
\CTEXsetup[beforeskip = {12bp plus 1ex minus 0.2ex}]{subsubsection}
\CTEXsetup[afterskip = {6bp plus 0.2ex}]{subsubsection}
\CTEXsetup[format = {\zihao{-4}\bfseries}]{subsubsection}
\geometry{
    a4paper, hmargin = 2.6cm, top = 2.92cm, bottom = 3.03cm,
    headheight = 0.45cm, headsep = 0.55cm, footskip = 1.05cm
}

\definecolor{mygreen}{rgb}{0,0.6,0}
\definecolor{mygray}{rgb}{0.5,0.5,0.5}
\definecolor{mymauve}{rgb}{0.58,0,0.82}
\lstset{ %
backgroundcolor=\color{white},   % choose the background color
basicstyle=\footnotesize\ttfamily,        % size of fonts used for the code
columns=fullflexible,
breaklines=true,                 % automatic line breaking only at whitespace
captionpos=b,                    % sets the caption-position to bottom
tabsize=4,
commentstyle=\color{mygreen},    % comment style
escapeinside={\%*}{*)},          % if you want to add LaTeX within your code
keywordstyle=\color{blue},       % keyword style
stringstyle=\color{mymauve}\ttfamily,     % string literal style
frame=shadowbox,
rulesepcolor=\color{red!20!green!20!blue!20},
numbers=left, 
numberstyle=\tiny,
xleftmargin=2em,
xrightmargin=2em, 
aboveskip=1em
}

\begin{document}
\maketitle
\pagestyle{plain}

\section{引言}
Lyapunov 第二方法(又称直接方法)是用于动态系统稳定性判别的一种重要手段。通过构造一个辅助函数,称 Lyapunov 函数,无需对系统方程求解,便可判断系统的稳定性。因此自然要问:如果已知一个系统稳定/渐进稳定/不稳定,符合相应条件的 Lyapunov 函数是否存在?这便是 Lyapunov 逆定理。在针对该问题的早期研究中,J. L. Massera 于1949年发表在《Annals of Mathematics》的论文《ON LIAPOUNOFF'S CONDITIONS OF STABILITY》是一个具有里程碑意义的工作,给后来的诸多相关研究奠定了基础。

在该论文中,Massera 首先给等度渐进稳定(equi-asymptotically stable)做了严格的数学定义,然后讨论了它和 Lyapunov 意义下的渐进稳定的关系。最后,Massera 证明了 周期系统、自治系统和线性系统下的 Lyapunov 逆定理,这是本报告主要关注的内容。

\section{问题背景}
考虑系统 
\begin{equation}\label{syseq}
    \dot{x} = f(x,t)
\end{equation}
其中$x\in\mathbf{R}^m$,$f(x,t)$是定义在
\begin{equation*}
|x|\leq H,\quad 0\leq t<+\infty
\end{equation*}
上的连续函数,并假设其对$x$的一阶偏导数是连续的,以保证系统方程(\ref{syseq})的解存在。记
\begin{equation*}
    x = F(t,x_0,t_0)
\end{equation*}
为系统初始时刻$t_0$的状态为$x_0$对应的解。假设$x=0$为方程的解,即有$f(0,t)\equiv0$。

\textbf{定义}~~零解稳定。$\iff \forall \epsilon>0, \exists \delta>0,|x_0|\leq \delta \Rightarrow |F(t,x_0,0)|\leq \epsilon, \forall t\geq0.$

\textbf{定义}~~零解渐进稳定。$\iff$零解稳定且 $ \exists \delta_0>0,|x_0|\leq \delta_0 \Rightarrow
\lim_{t\rightarrow+\infty}|F(t,x_0,0)|=0.$

\textbf{定理}~~若有函数$V\in C^1( B_r\times J,R),~J\triangleq[0,+\infty),~B_r\triangleq\{x|~|x|\leq r\}$满足条件:\par
~~~~~~~~(1) $V$正定(存在正定函数$W(x)$,使得$V(x,t)\geq W(x)$);\par
~~~~~~~~(2) $dV/dt<0,\quad (x,t)\in B_r\times J  $\par
则零解渐进稳定。

\section{周期系统及自治系统下关于渐进稳定性的Lyapunov逆定理}
在证明逆定理之间,Massera 先给出如下引理,后人称之为 Massera 引理。\par
\textbf{引理}~~ 设$\epsilon:[0,+\infty)\rightarrow R$是一个正的函数,$\lim_{t\rightarrow+\infty}\epsilon(t)=0$。设$M(t)$是一个正的、连续非减函数,则存在一个函数$G:[0,+\infty)\rightarrow[0,+\infty)$,满足:$G(0)=G'(0)=0$,且在定义域$[0,+\infty)$上,$G(x),G'(x)$ 都是连续单调递增函数,且 对任意$\delta>0$,任意满足$0<\epsilon^*(t)\leq \delta\cdot\epsilon(t)$的$\epsilon^*(t)$,如下两个积分$$\int_0^{+\infty}G[\epsilon^*(t)]dt,\quad \int_0^{+\infty}G'[\epsilon^*(t)]\cdot M(t)dt$$对$\epsilon^*$一致收敛。\\

借助上述引理,可以证明如下定理。\par
\textbf{定理}~~ 如果系统是周期系统或自治系统,且零点渐进稳定,那么存在一个正定的 $V$ 函数,其沿解的倒数$dV/dt$是负定的。\par
\textbf{证明}~~
假设周期系统的周期为 1,令
\begin{equation*}
    \epsilon(t) = \sup_{x_0,t_0}~|F(t,x_0,t_0)|,
\end{equation*}
其中$F(t,x_0,t_0)$为系统的解,且参数满足
\begin{equation}\label{dom}
    |x_0|\leq \delta_0,\quad 
    0\leq t_0\leq 1,\quad
    t_0\leq t,
\end{equation}
其中$\delta_0$为定义渐近稳定性时的参数,即满足$|x_0|\leq \delta_0$时,$\lim_{t\rightarrow+\infty}|F(t,x_0,0)|=0$。由此易得,$\epsilon(t)>0$且$\lim_{t\rightarrow+\infty}\epsilon(t)=0$。

另一方面,令$M(t)$为以下两个偏导数
\begin{equation*}
    \frac{\partial|F(t,x_0,t_0)|}{\partial x_0},\quad \frac{\partial|F(t,x_0,t_0)|}{\partial t_0}
\end{equation*}在定义域(\ref{dom})的上界,由$f(x,t)$的有界性知$M(t)$存在,不妨假设其为连续非减的。

借助于以上定义的$\epsilon(t)$和$M(t)$,得到符合引理条件的函数$G$。由此定义$V$函数
\begin{equation*}
    V(x,t) = \int_t^{+\infty} G[|F(\tau,x,t)|]d\tau,
\end{equation*}
从形式上来看,$V(x,t)$表示的是函数$G(|\xi|)$沿初始状态为$(x,t)$的解曲线
\begin{equation*}
    \xi = F(\tau,x,t),\quad \tau\geq t
\end{equation*}
的曲线积分。
下面来证明上述$V$函数具有期望的性质,能保证零解的渐进稳定性。令$[t]$表示$t$的整数部分,且$t'=t-[t], \tau'=\tau-[\tau]$,注意到我们假设周期系统的周期为$1$,那么$[t]$即代表系统运行的整周期时长,$t'$代表未满一周期的时长。当满足条件
\begin{equation*}
    |x|\leq \delta_0,\quad
    0\leq t' < 1,\quad
    t' \leq \tau'
\end{equation*}
时,可得
\begin{equation*}
    |F(\tau,x,t)| = |F(\tau',x,t')|\triangleq\epsilon^*(\tau')\leq
    \epsilon(\tau').
\end{equation*}
上式中左端等号在周期系统和自治系统下成立,右端不等号是根据$\epsilon(t)$的定义。根据引理可得积分
\begin{equation*}
    V(x,t) = \int_{t'}^{+\infty} G[\epsilon^*(\tau')]d\tau'
\end{equation*}
关于$\epsilon^*$一致收敛,即对定义域$\{(x,t)|~|x|\leq\delta_0,t\geq0\}$中任意$(x,t)$,上述积分有意义。同时,根据引理
\begin{equation*}
    \int_{t'}^{+\infty} G'[\epsilon^*(\tau')]\cdot M(\tau')d\tau'
\end{equation*}
也关于$\epsilon^*$一致收敛,可知$V(x,t)$的偏导数有定义且连续。

当点$(x,t)$沿初始状态为$(x_0,t_0)$的解曲线移动时,记
\begin{equation*}
    \bar{V} = \int_t^{+\infty} G[|F(\tau,x_0,t_0)|]d\tau,
\end{equation*}
则$V(x,t)$沿解曲线的导数
\begin{equation*}
    dV/dt = d\bar{V}/dt = -G[|F(t,x_0,t_0)|] = -G(|x|)<0.
\end{equation*}

最后,只要说明$V(x,t)$是正定函数,即存在正定函数$W(x)$,使得$V(x,t)\geq W(x)$。显然,$V(x,t)$在$x\neq0$时都为正,对于周期系统,$V(x,t)$也是关于$t$的周期函数,因此取
\begin{equation*}
    W(x) = \inf_t~V(x,t)>0
\end{equation*}
即可。



\end{document}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值