稳定状态模型 (一): 微分方程稳定性理论简介


稳定状态模型系列博文

稳定状态模型 (一): 微分方程稳定性理论简介 :自治系统、动力系统相平面、相图、轨线 、  奇点、孤立奇点

稳定状态模型 (二):再生资源的管理和开发:资源增长模型 、资源开发模型 、经济效益模型、 种群的相互竞争模型

稳定状态模型 (三):Volterra 模型


目录

自治系统、动力系统                    相平面、相图、轨线                            奇点、孤立奇点


虽然动态过程的变化规律一般要用微分方程建立的动态模型来描述,但是对于某些 实际问题,建模的主要目的并不是要寻求动态过程每个瞬时的性态,而是研究某种意义下稳定状态的特征,特别是当时间充分长以后动态过程的变化趋势。譬如在什么情况下 描述过程的变量会越来越接近某些确定的数值,在什么情况下又会越来越远离这些数值 而导致过程不稳定。为了分析这种稳定与不稳定的规律常常不需要求解微分方程,而可以利用微分方程稳定性理论,直接研究平衡状态的稳定性就行了。

本章先介绍平衡状态与稳定性的概念,然后列举几个这方面的建模例子。

自治系统、动力系统

 相平面、相图、轨线

奇点、孤立奇点

 定义 5         一个奇点不是稳定的,则称这个奇点是不稳定的。

对于常系数齐次线性系统(3)有下述定理。

定理2    设 x = x(t)是系统(3)的通解。则

(i)如果系统(3)的系数矩阵 A 的一切特征根的实部都是负的,则系统(3)的 零解是渐近稳定的。

(ii)如果 A 的特征根中至少有一个根的实部是正的,则系统(3)的零解是不稳 定的。

(iii)如果 A 的一切特征根的实部都不是正的,但有零实部,则系统(3)的零解 可能是稳定的,也可能是不稳定的,但总不会是渐近稳定的。

定理2 告诉我们:系统(3)的零解渐近稳定的充分必要条件是 A 的一切特征根的 实部都是负的。

对于非线性系统,一般不可能找出其积分曲线或轨迹,也就不可能直接导出奇点的 稳定性。为克服这一困难,在奇点附近用一个线性系统来近似这个非线性系统,用这个 近似系统的解来给出这个奇点的稳定解.

称为系统(2)的线性近似。一开始,人们以为总可以用线性近似系统来代替所研究的原系统。但后来人们发现,这种看法是不对的,或至少说是不全面的,非线性系统中的 许多性质,在它的线性近似中不再保留。即使象零解稳定性这样一个问题,也要在一定 条件下,才可用它的线性近似系统代替原系统来研究。关于这个问题,我们有下述定理:

定理 3   如果系统(4)的零解是渐近稳定的,或不稳定的,则原系统的零解也是 渐近稳定的或不稳定的。然而,如果系统(4)的零解是稳定的,则原系统的零解是不 定的,即此时不能从线性化的系统来导出原系统的稳定性。


稳定状态模型系列博文

稳定状态模型 (一): 微分方程稳定性理论简介 :自治系统、动力系统相平面、相图、轨线 、  奇点、孤立奇点

稳定状态模型 (二):再生资源的管理和开发:资源增长模型 、资源开发模型 、经济效益模型、 种群的相互竞争模型

稳定状态模型 (三):Volterra 模型


 

  • 10
    点赞
  • 102
    收藏
    觉得还不错? 一键收藏
  • 6
    评论
随机微分方程稳定性分析是指对于一个给定的随机微分方程,通过数值模拟方法得出系统的稳定性特征。其基本原理是通过随机微分方程的数值解,观察系统的演化趋势,判断系统是否会趋向于某一个稳定状态。算法步骤如下: 1. 定义随机微分方程,并确定模拟时间范围和步长。 2. 采用数值模拟方法(如欧拉法或龙格-库塔法)求解随机微分方程的数值解。 3. 对于每个时间步长,计算系统的状态量,并记录下来。 4. 对于所有的状态量,计算其统计量,如平均值、方差、标准差等。 5. 根据系统状态量的统计特征,判断系统是否趋向于某一个稳定状态。 6. 如果系统趋向于稳定状态,则继续模拟直到达到稳定状态,否则重新调整参数或者重新设计模型。 Python代码实现如下: ```python import numpy as np import matplotlib.pyplot as plt # 定义随机微分方程 def f(x, t): return -x + np.random.normal(0, 1) # 模拟时间范围和步长 t_start, t_end, dt = 0, 10, 0.01 # 初始化状态量 x = 0 # 记录状态量的变化 x_list = [] # 数值模拟方法求解随机微分方程的数值解 for t in np.arange(t_start, t_end, dt): x = x + f(x, t) * dt x_list.append(x) # 绘制状态量的变化曲线 plt.plot(np.arange(t_start, t_end, dt), x_list) plt.xlabel('Time') plt.ylabel('State variable') plt.show() # 计算状态量的统计特征 print('Mean:', np.mean(x_list)) print('Variance:', np.var(x_list)) print('Standard deviation:', np.std(x_list)) ``` 运行以上代码,就可以得到随机微分方程的数值解和状态量的统计特征。根据统计特征,就可以判断系统是否趋向于某一个稳定状态

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值