动手深度学习:计算机视觉——语义分割

目录

图像分割和实例分割

Pascal VOC2012 语义分割数据集

预处理数据

自定义语义分割数据集类

读取数据集

整合所有组件

转置卷积

填充、步幅和多通道

与矩阵变换的联系

使用矩阵乘法来实现卷积

使用矩阵乘法来实现转置卷积

使用全卷积网络FCN进行语义分割

构造模型

特征提取层

1×1卷积层和转置卷积层

初始化转置卷积层

读取数据集

训练

​编辑

预测

需要注意的函数

net.children()和list

F.cross_entropy

切片


目标检测问题中,我们一直使用方形边界框来标注和预测图像中的目标。 而语义分割(semantic segmentation)可以识别并理解图像中每一个像素的内容,其语义区域的标注和预测是像素级的。 下图展示了语义分割中图像有关狗、猫和背景的标签。 与目标检测相比,语义分割标注的像素级的边框显然更加精细。

图像分割和实例分割

计算机视觉领域还有2个与语义分割相似的重要问题,即图像分割(image segmentation)和实例分割(instance segmentation)。

  • 图像分割将图像划分为若干组成区域,这类问题的方法通常利用图像中像素之间的相关性。它在训练时不需要有关图像像素的标签信息,在预测时也无法保证分割出的区域具有我们希望得到的语义。以 上图图像作为输入,图像分割可能会将狗分为两个区域:一个覆盖以黑色为主的嘴和眼睛,另一个覆盖以黄色为主的其余部分身体。
  • 实例分割也叫同时检测并分割(simultaneous detection and segmentation),它研究如何识别图像中各个目标实例的像素级区域。与语义分割不同,实例分割不仅需要区分语义,还要区分不同的目标实例。例如,如果图像中有两条狗,则实例分割需要区分像素属于的两条狗中的哪一条。

Pascal VOC2012 语义分割数据集

最重要的语义分割数据集之一是Pascal VOC2012数据集的tar文件大约为2GB,位于../data/VOCdevkit/VOC2012

%matplotlib inline
import os
import torch
from torch import nn
from torch.nn import functional as F
import torchvision
from PIL import Image
from d2l import torch as d2l

d2l.DATA_HUB['voc2012'] = (d2l.DATA_URL + 'VOCtrainval_11-May-2012.tar',
'4e443f8a2eca6b1dac8a6c57641b67dd40621a49')
voc_dir = d2l.download_extract('voc2012', 'VOCdevkit/VOC2012')

进入路径../data/VOCdevkit/VOC2012之后,我们可以看到数据集的不同组件。 ImageSets/Segmentation路径包含用于训练和测试样本的文本文件,而JPEGImagesSegmentationClass路径分别存储着每个示例的输入图像和标签。 此处的标签也采用图像格式,其尺寸和它所标注的输入图像的尺寸相同。 此外,标签中颜色相同的像素属于同一个语义类别。 下面将read_voc_images函数定义为将所有输入的图像和标签读入内存。

def read_voc_images(voc_dir, is_train=True):
    """读取所有VOC图像并标注"""
    txt_fname = os.path.join(voc_dir, 'ImageSets', 'Segmentation',
                             'train.txt' if is_train else 'val.txt')
    mode = torchvision.io.image.ImageReadMode.RGB
    with open(txt_fname, 'r') as f:
        images = f.read().split()
    features, labels = [], []
    for i, fname in enumerate(images):
        features.append(torchvision.io.read_image(os.path.join(
            voc_dir, 'JPEGImages', f'{fname}.jpg')))
        labels.append(torchvision.io.read_image(os.path.join(
            voc_dir, 'SegmentationClass' ,f'{fname}.png'), mode))
    return features, labels

train_features, train_labels = read_voc_images(voc_dir, True)

如果报错,参考No such operator image::read_file问题解决_iwill323的博客-CSDN博客

下面绘制前5个输入图像及其标签。 在标签图像中,白色和黑色分别表示边框和背景,而其他颜色则对应不同的类别。

标签图像的颜色是固定的,RGB颜色值和类名:

VOC_COLORMAP = [[0, 0, 0], [128, 0, 0], [0, 128, 0], [128, 128, 0],
                [0, 0, 128], [128, 0, 128], [0, 128, 128], [128, 128, 128],
                [64, 0, 0], [192, 0, 0], [64, 128, 0], [192, 128, 0],
                [64, 0, 128], [192, 0, 128], [64, 128, 128], [192, 128, 128],
                [0, 64, 0], [128, 64, 0], [0, 192, 0], [128, 192, 0],
                [0, 64, 128]]


VOC_CLASSES = ['background', 'aeroplane', 'bicycle', 'bird', 'boat',
               'bottle', 'bus', 'car', 'cat', 'chair', 'cow',
               'diningtable', 'dog', 'horse', 'motorbike', 'person',
               'potted plant', 'sheep', 'sofa', 'train', 'tv/monitor']

通过上面定义的两个常量,我们可以方便地查找标签中每个像素的类索引。 我们定义了voc_colormap2label函数来构建从上述RGB颜色值到类别索引的映射,而voc_label_indices函数将RGB值映射到在Pascal VOC2012数据集中的类别索引。注意,对RGB颜色值采用了256进制的操作,以便于迅速索引。

#@save
def voc_colormap2label():
    """构建从RGB到VOC类别索引的映射"""
    colormap2label = torch.zeros(256 ** 3, dtype=torch.long)
    for i, colormap in enumerate(VOC_COLORMAP):
        colormap2label[
            (colormap[0] * 256 + colormap[1]) * 256 + colormap[2]] = i
        # 将RGB三通道像素值按照R*256*256+G*256+B的方法算成一个像素值,
        # 再把这个值作为字典索引,相当于采用256进制,所以这个索引是唯一的
    return colormap2label

#@save
def voc_label_indices(colormap, colormap2label):
    """将VOC标签中的RGB值映射到它们的类别索引"""
    colormap = colormap.permute(1, 2, 0).numpy().astype('int32') # 将通道放在最后一维
    idx = ((colormap[:, :, 0] * 256 + colormap[:, :, 1]) * 256
           + colormap[:, :, 2])  # numpy()类型,正常的乘号和加号运算
    return colormap2label[idx]

例如,在第一张样本图像中,飞机头部区域的类别索引为1,而背景索引为0

y = voc_label_indices(train_labels[0], voc_colormap2label()) # train_labels指标签图片
y[105:115, 130:140], VOC_CLASSES[1]
(tensor([[0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
         [0, 0, 0, 0, 0, 0, 0, 1, 1, 1],
         [0, 0, 0, 0, 0, 0, 1, 1, 1, 1],
         [0, 0, 0, 0, 0, 1, 1, 1, 1, 1],
         [0, 0, 0, 0, 0, 1, 1, 1, 1, 1],
         [0, 0, 0, 0, 1, 1, 1, 1, 1, 1],
         [0, 0, 0, 0, 0, 1, 1, 1, 1, 1],
         [0, 0, 0, 0, 0, 1, 1, 1, 1, 1],
         [0, 0, 0, 0, 0, 0, 1, 1, 1, 1],
         [0, 0, 0, 0, 0, 0, 0, 0, 1, 1]]),
 'aeroplane')

预处理数据

图片分类中我们可以把图片resize到统一大小。如果语义分割也采用resize处理数据,那么预测的像素类别也要重新映射回原始尺寸的输入图像。resize拉伸的时候中间的像素是通过插值法得到的,而标签是包含一个个像素的标签的,这样的映射可能不够精确,尤其在不同语义的分割区域,所以语义分割的图像不用resize。

在语义分割中,为了使图片大小一样,我们一般是将图像裁剪为和标签相同大小的区域(使用transforms.RandomCrop,裁剪输入图像和标签(图片)的相同区域)。

输入图像随机裁剪,有随机成分,标签是固定的,如何与标签对应?下面函数中get_params允许裁剪之后的区域返回边框的坐标数值(边界框),*rect就是把边界框四个坐标展开,这样对图片和标号做同样的裁剪

def voc_rand_crop(feature, label, height, width):
    """随机裁剪特征和标签图像"""
    rect = torchvision.transforms.RandomCrop.get_params(
        feature, (height, width))
    feature = torchvision.transforms.functional.crop(feature, *rect)
    label = torchvision.transforms.functional.crop(label, *rect)
    return feature, label


imgs = []
for _ in range(n):
    imgs += voc_rand_crop(train_features[0], train_labels[0], 200, 300)

imgs = [img.permute(1, 2, 0) for img in imgs]
d2l.show_images(imgs[::2] + imgs[1::2], 2, n);

自定义语义分割数据集类

通过继承高级API提供的Dataset类,自定义了一个语义分割数据集类VOCSegDataset。 通过实现__getitem__函数,我们可以任意访问数据集中索引为idx的输入图像及其每个像素的类别索引。 由于数据集中有些图像的尺寸可能小于随机裁剪所指定的输出尺寸,这些样本可以通过自定义的filter函数移除掉。 此外,我们还定义了normalize_image函数,从而对输入图像的RGB三个通道的值分别做标准化。

#@save
class VOCSegDataset(torch.utils.data.Dataset):
    """一个用于加载VOC数据集的自定义数据集"""

    def __init__(self, is_train, crop_size, voc_dir):
        self.transform = torchvision.t
  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值