在Stable Diffusion中,模型并不只有一种,不同插件有不同的模型,分别作用于不同的功能。
01
大模型
也就是stable diffusion模型,在默认界面中,它位于web页面的左上角,下拉列表对应的模型:
可以理解为绘画风格集合,SD需要大模型来规定它生成的图片风格,大模型是必选模型,你必须选择一个大模型才能开始生成工作。
如何获取?
这部分模型可以通过在各个模型网站下载,如果有代理可以前往civitai.com ,也叫做C站,以及huggingface.co 叫做抱脸。
如果没有代理,可以前往 liblib.ai 下载,但是需要注意的是,这些网站上通常是包括多种类型的模型,并不是所有模型都是用于这里的, 你需要选择 checkpoint类型,文件尺寸大于等于1.8G的,通常是大模型。
大模型的放置位置在整合包根目录下的 \models\Stable-diffusion\ 目录内,可以通过建立下级目录的方式进行分类,方便管理。
下载的新模型放置好之后,可以直接点击网页上下拉列表旁边的刷新按钮,直接加载。当然,也可以通过关闭页面并重启控制台来重新加载。
02
LoRA
在默认界面中,SD1.6以上的版本,lora显示在生成标签的最右侧:
lora是可选模型,即便没有lora,也可以正常生成图像。
lora模型的文件位置在根目录\models\Lora,下载对应的模型放入即可,下载网站跟上面的大模型是相同的几个网站,只是类型要选lora类型。
重复一遍,大模型的类型通常是checkpoint,而lora的类型通常就是lora。这里说的类型不是指下载下来的文件类型,而是网站对于模型的分类,这一点一定要记住。
lora和大模型以及下面说的嵌入式模型,他们的文件后缀都是相同的,光凭借后缀是无法区分的,你必须在下载每个模型的时候确定它属于什么,再放到对应目录,而不是一股脑下载完才开始挪。
lora是在大模型基础上进行进一步修改的算法,一般是比如特定人物lora或者是调整色彩饱和度之类的专门的作用。
lora的调用方式很简单,如果是你自己的lora,你可以通过点击lora卡片的方式,自动调用lora,会在你的提示词区域自动生成一个带有尖括号的特殊词组,例如:
关于lora的进一步使用,以及权重的相关解释,请前往B站或其它平台,另行搜索相关教程视频了解。
03
嵌入式
它通常是作用于反提示词(负面提示词)的,经典的常用模型包括EasyNegative, negative_hand 之类的。它的位置在生成标签旁边:
使用方式跟lora一样,点击卡片就可以使用了,会自动出现在反向提示词内。当然你也可以手动输入或复制对应的触发词(通常是文件名)。
嵌入式模型的文件位置在 根目录\embeddings ,下载对应的嵌入式模型放入即可。
04
controlnet模型
这是插件 controlnet 需要使用模型。它在界面上位于生成标签内,如果你安装了这个插件的话。目前秋叶整合包应该是初始就带了controlnet插件:
通过点击右方的三角箭头,展开controlnet设置,其中有一行 预处理器 和 模型 的下拉选择,我们这里说到的模型就是特指这里的controlnet模型:
确切地说,它的完整名称应该叫 controlnet专用模型。
在这个界面中,“预处理器”对应的是
根目录\extensions\sd-webui-controlnet\annotator\downloads
这个位置,但这里比较复杂,你需要仔细看相关教程放好对应的文件夹和文件。
“模型”的下拉菜单,对应的是 根目录\models\ControlNet 这个位置,或者是 \extensions\sd-webui-controlnet\models 这个目录,这两个目录都可以生效,系统会自动从这两个目录中寻找你放入的模型进行加载。
总的来说,controlnet一个新的算法它包含两部分,一个是预处理器,一个是模型,两者缺一不可。
对于controlnet模型的基础知识就介绍到这,controlnet因为是一个非常经典的插件,后续老师会带大家详细了解,记得关注我呦~
目前 ControlNet 已经更新到 1.1 版本,相较于 1.0 版本,ControlNet1.1 新增了更多的预处理器和模型,每种模型对应不同的采集方式,再对应不同的应用场景,每种应用场景又有不同的变现空间
我花了一周时间彻底把ControlNet1.1的14种模型研究了一遍,跑了一次全流程,终于将它完整下载好整理成网盘资源。
其总共11 个生产就绪模型、2 个实验模型和 1 个未完成模型,现在就分享给大家,点击下方卡片免费领取。
1. 线稿上色
**方法:**通过 ControlNet 边缘检测模型或线稿模型提取线稿(可提取参考图片线稿,或者手绘线稿),再根据提示词和风格模型对图像进行着色和风格化。
**应用模型:**Canny、SoftEdge、Lineart。
Canny 示例:(保留结构,再进行着色和风格化)
2. 涂鸦成图
方法:通过 ControlNet 的 Scribble 模型提取涂鸦图(可提取参考图涂鸦,或者手绘涂鸦图),再根据提示词和风格模型对图像进行着色和风格化。
应用模型:Scribble。
Scribble 比 Canny、SoftEdge 和 Lineart 的自由发挥度要更高,也可以用于对手绘稿进行着色和风格处理。Scribble 的预处理器有三种模式:Scribble_hed,Scribble_pidinet,Scribble_Xdog,对比如下,可以看到 Scribble_Xdog 的处理细节更为丰富:
Scribble 参考图提取示例(保留大致结构,再进行着色和风格化):
3. 建筑/室内设计
**方法:**通过 ControlNet 的 MLSD 模型提取建筑的线条结构和几何形状,构建出建筑线框(可提取参考图线条,或者手绘线条),再配合提示词和建筑/室内设计风格模型来生成图像。
**应用模型:**MLSD。
MLSD 示例:(毛坯变精装)
这份完整版的ControlNet 1.1模型我已经打包好,需要的点击下方插件,即可前往免费领取!
4. 颜色控制画面
**方法:**通过 ControlNet 的 Segmentation 语义分割模型,标注画面中的不同区块颜色和结构(不同颜色代表不同类型对象),从而控制画面的构图和内容。
**应用模型:**Seg。
Seg 示例:(提取参考图内容和结构,再进行着色和风格化)
如果还想在车前面加一个人,只需在 Seg 预处理图上对应人物色值,添加人物色块再生成图像即可。
5. 背景替换
**方法:**在 img2img 图生图模式中,通过 ControlNet 的 Depth_leres 模型中的 remove background 功能移除背景,再通过提示词更换想要的背景。
**应用模型:**Depth,预处理器 Depth_leres。
**要点:**如果想要比较完美的替换背景,可以在图生图的 Inpaint 模式中,对需要保留的图片内容添加蒙版,remove background 值可以设置在 70-80%。
Depth_leres 示例:(将原图背景替换为办公室背景)
6. 图片指令
**方法:**通过 ControlNet 的 Pix2Pix 模型(ip2p),可以对图片进行指令式变换。
应用模型:ip2p,预处理器选择 none。
**要点:**采用指令式提示词(make Y into X),如下图示例中的 make it snow,让非洲草原下雪。
Pix2Pix 示例:(让非洲草原下雪)
7. 风格迁移
**方法:**通过 ControlNet 的 Shuffle 模型提取出参考图的风格,再配合提示词将风格迁移到生成图上。
**应用模型:**Shuffle。
Shuffle 示例:(根据魔兽道具风格,重新生成一个宝箱道具)
8. 色彩继承
**方法:**通过 ControlNet 的 t2iaColor 模型提取出参考图的色彩分布情况,再配合提示词和风格模型将色彩应用到生成图上。
**应用模型:**Color。
Color 示例:(把参考图色彩分布应用到生成图上)
这份完整版的ControlNet 1.1模型我已经打包好,需要的点击下方插件,即可前往免费领取!
这里就简单说几种应用:
1. 人物和背景分别控制
2. 三维重建
3. 更精准的图片风格化
4. 更精准的图片局部重绘
以上就是本教程的全部内容了,重点介绍了controlnet模型功能实用,当然还有一些小众的模型在本次教程中没有出现,目前controlnet模型确实还挺多的,所以重点放在了官方发布的几个模型上。
同时大家可能都想学习AI绘画技术,也想通过这项技能真正赚到钱,但是不知道该如何开始学习,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学,因为自身做副业需要,我这边整理了全套的Stable Diffusion入门知识点资料,大家有需要可以直接点击下边卡片获取,希望能够真正帮助到大家。