diffusion扩散模型参考论文与代码

 十分钟读懂Diffusion:图解Diffusion扩散模型 - 知乎在之前的文章中,我们曾经介绍过Diffusion的具体原理,但是讲的还是比较偏理论,为了让大家快速了解Diffusion原理,这篇文章我们通过图解的方式。 绝密伏击:AIGC爆火的背后——扩散模型DDPM浅析1. Diffusion文字…icon-default.png?t=N7T8https://zhuanlan.zhihu.com/p/599887666

         扩散模型可以从噪声到图像,输入是噪声,输出是图像。扩散模型生产图像的关键是用网络对噪声->图像映射关系的建模,关键是有噪声到图像的数据集。获取从噪声到图像的映射,这个可以通过在图像中加噪声的方式,将图像变为噪声,这样就得到了噪声和图像的映射关系。

<think>好的,我需要帮助用户查找关于扩散模型diffusion models)的学术论文。首先,我应该回忆扩散模型的基本概念和相关研究,然后确定主要的学术资源库,并可能推荐一些关键论文或作者。 扩散模型近年来在生成模型中表现突出,特别是在图像生成领域。它们通过逐步去噪的过程生成数据,类似于物理学中的扩散过程。用户可能需要了解最新的研究进展、基础理论或应用案例。 接下来,我应该考虑如何引导用户查找论文。常见的学术数据库包括arXiv、Google Scholar、PubMed、IEEE Xplore等。此外,一些特定的会议如NeurIPS、ICML、CVPR可能会有相关论文。需要建议用户使用这些平台,并提供一些搜索关键词,比如“diffusion models”、“denoising diffusion probabilistic models”等。 另外,根据用户提供的引用内容,引用[1]提到了扩散模型中的采样步骤,这可能涉及到去噪过程的具体实现。引用[3]讨论了模型对数据集的逼近,这可能扩散模型的训练方法有关。引用[4]提到单塔模型和双塔模型,虽然主要关于链接预测,但可能模型结构优化相关,可间接参考。 需要确保推荐的论文涵盖基础理论、优化方法和实际应用。例如,最初的DDPM(Denoising Diffusion Probabilistic Models)论文,以及后续的改进如DDIM(Denoisson Diffusion Implicit Models)。此外,应用在文本生成、多模态任务中的扩散模型论文也可能有用。 还要提醒用户注意论文的发表时间,优先选择近年来的高引用文章,并查看相关研究小组的工作,如Jonathan Ho、Yang Song等作者的研究。 最后,可能需要指导用户如何使用学术搜索引擎的高级功能,比如按时间排序、筛选会议/期刊,以及如何跟踪后续研究(通过查看引用该论文的其他文献)。</think>关于扩散模型Diffusion Models)的学术论文,您可以通过以下途径和关键词进行查找: --- ### **1. 核心学术数据库推荐** - **arXiv**:预印本平台,收录计算机科学领域最新论文,搜索关键词: `"diffusion models"`、`"denoising diffusion probabilistic models"`、`"score-based generative models"` 示例论文: - *《Denoising Diffusion Probabilistic Models》*(DDPM,基础理论框架)[^1] - *《Diffusion Models Beat GANs on Image Synthesis》*(性能优化的里程碑研究) - *《Classifier-Free Diffusion Guidance》*(改进生成控制的方法) - **Google Scholar**: 搜索组合词:`diffusion models + [具体方向]`(如`text-to-image`、`medical imaging`、`video generation`) 高被引作者:Jonathan Ho、Yang Song、Jascha Sohl-Dickstein等。 - **顶会/期刊**: - **NeurIPS/ICML/CVPR**:关注生成模型、计算机视觉方向的session。 - **IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)**:常有理论深入分析。 --- ### **2. 关键研究方向论文示例** - **基础理论**: - *《Deep Unsupervised Learning using Nonequilibrium Thermodynamics》*(扩散模型的早期奠基工作) - *《Score-Based Generative Modeling through Stochastic Differential Equations》*(SDE视角的统一框架)[^1] - **加速采样**: - *《Denoising Diffusion Implicit Models》*(DDIM,减少采样步骤的经典方法) - *《Progressive Distillation for Fast Sampling of Diffusion Models》*(通过蒸馏优化速度) - **多模态跨领域应用**: - *《GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models》*(文本到图像生成)[^2] - *《Diffusion Models for Medical Image Analysis》*(医学图像分析综述) --- ### **3. 检索技巧** 1. **追踪引用文献**:在Google Scholar中打开一篇经典论文(如DDPM),点击“被引用次数”查看后续研究。 2. **过滤时间范围**:选择近3年的论文以获取最新进展。 3. **结合代码库**:许多论文在GitHub开源代码(搜索`GitHub + diffusion models`),可实践辅助理解。 --- ### **4. 开源工具库** - **Hugging Face Diffusers**:提供Diffusion模型的预训练实现和教程。 - **Stable Diffusion**:热门文本到图像模型,相关论文参考其技术报告。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值