【微电网调度】风光场景削减及源荷不确定性的虚拟电厂随机优化调度研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

随着全球能源结构的转型,可再生能源,尤其是风能和光伏发电(风光)的渗透率日益提高。然而,风光发电的间歇性和波动性给电力系统的稳定运行带来了挑战。虚拟电厂(VPP)作为一种整合分布式能源的有效方式,能够聚合多种能源资源,提升电力系统的灵活性和可靠性。本文研究了在风光场景削减的基础上,考虑源荷不确定性的虚拟电厂随机优化调度问题。通过引入场景削减技术,有效降低了不确定性建模的计算复杂度;同时,考虑了风光发电和负荷需求的不确定性,构建了更贴近实际的VPP优化调度模型。研究结果表明,所提出的随机优化调度方法能够有效地提高VPP的经济效益,并增强其应对源荷不确定性的能力。

引言

能源危机和环境污染是当今世界面临的两大挑战。在全球范围内,各国政府都在积极推动能源转型,大力发展可再生能源。风能和光伏发电作为清洁、可持续的能源形式,受到了广泛的关注和应用。然而,风光发电的间歇性、波动性和不可预测性给电力系统的稳定运行带来了严峻的挑战。为了克服这些挑战,需要采取有效的技术手段来提高电力系统的灵活性和可靠性。

虚拟电厂(VPP)是一种通过先进的通信和控制技术,将分布式电源、储能系统、可控负荷等资源聚合起来,进行集中控制和优化调度的技术。VPP可以作为一个特殊的电厂参与电力市场的交易,为电力系统提供辅助服务,从而提高电力系统的整体效率和可靠性。因此,VPP被认为是解决可再生能源接入问题、提高电力系统灵活性和降低碳排放的重要手段。

然而,VPP的优化调度也面临着诸多挑战。首先,风光发电和负荷需求具有高度的不确定性,这使得VPP的调度策略需要充分考虑这些不确定性因素。其次,VPP内部资源的多样性也增加了调度的复杂性。此外,大规模的不确定性建模会导致计算复杂度呈指数级增长,给求解带来困难。

为了应对这些挑战,本文提出了一种基于风光场景削减和考虑源荷不确定性的虚拟电厂随机优化调度方法。该方法通过引入场景削减技术,有效降低了不确定性建模的计算复杂度;同时,考虑了风光发电和负荷需求的不确定性,构建了更贴近实际的VPP优化调度模型。通过对所提出的方法进行仿真分析,验证了其有效性和可行性。

文献综述

近年来,针对VPP的优化调度问题,国内外学者进行了大量的研究。

一些研究重点关注VPP的建模和控制策略。例如,文献[1]提出了一种基于模型预测控制的VPP调度方法,该方法能够有效地应对风光发电的波动性。文献[2]研究了基于多代理系统的VPP控制策略,该策略能够实现VPP内部资源的分布式协调控制。文献[3]探讨了基于区块链技术的VPP交易模式,该模式能够提高VPP交易的透明度和安全性。

另一些研究关注VPP的不确定性建模和优化调度。例如,文献[4]提出了一种基于鲁棒优化的VPP调度方法,该方法能够保证VPP在最恶劣情况下的运行安全。文献[5]研究了基于随机规划的VPP调度方法,该方法能够充分考虑风光发电和负荷需求的不确定性。文献[6]提出了一种基于模糊推理的VPP调度方法,该方法能够有效地处理VPP内部资源的模糊性。

然而,现有的研究仍然存在一些不足之处。首先,大多数研究都假设风光发电和负荷需求的不确定性是独立的,而实际上这些不确定性之间存在一定的相关性。其次,一些研究采用的确定性优化方法无法有效地处理风光发电和负荷需求的不确定性。此外,大规模的不确定性建模会导致计算复杂度呈指数级增长,给求解带来困难。

风光场景削减及源荷不确定性建模

3.1 风光场景削减

由于风光发电和负荷需求的不确定性,需要考虑大量的场景才能准确地描述这些不确定性。然而,大量的场景会导致计算复杂度呈指数级增长,给求解带来困难。为了解决这个问题,本文采用了一种基于场景削减技术的方案。

场景削减技术的目的是在保证优化结果精度的前提下,尽可能地减少场景的数量。常见的场景削减方法包括距离聚类法、概率距离法和启发式算法等。本文采用一种基于K-means聚类的场景削减方法。该方法首先生成大量的初始场景,然后利用K-means聚类算法将这些场景分成若干个聚类,最后选择每个聚类的中心场景作为削减后的代表性场景。

3.2 源荷不确定性建模

本文考虑了风光发电和负荷需求的不确定性。对于风光发电,假设其出力服从Beta分布,Beta分布的参数可以通过历史数据进行估计。对于负荷需求,假设其值服从正态分布,正态分布的参数可以通过历史数据进行估计。

虚拟电厂随机优化调度模型

本文构建了一个考虑源荷不确定性的虚拟电厂随机优化调度模型。该模型的目标是最小化VPP的运行成本,包括发电成本、购电成本和弃风弃光成本。模型的约束条件包括:

  • 功率平衡约束:VPP内部的总发电量必须等于总负荷需求。

  • 机组运行约束:VPP内部的机组出力必须满足其上下限约束。

  • 线路容量约束:VPP内部的线路传输功率必须满足其容量约束。

  • 储能系统约束:储能系统的充放电功率和储能容量必须满足其上下限约束。

  • 可控负荷约束:可控负荷的削减量必须满足其上下限约束。

本文研究了在风光场景削减的基础上,考虑源荷不确定性的虚拟电厂随机优化调度问题。通过引入场景削减技术,有效降低了不确定性建模的计算复杂度;同时,考虑了风光发电和负荷需求的不确定性,构建了更贴近实际的VPP优化调度模型。研究结果表明,所提出的随机优化调度方法能够有效地提高VPP的经济效益,并增强其应对源荷不确定性的能力。

⛳️ 运行结果

🔗 参考文献

[1] 申江兰,毛业涛,聂祥论,等.基于数据驱动场景建模的综合能源系统调度方法[J].建模与仿真, 2024, 13(2):1759-1769.DOI:10.12677/mos.2024.132166.

[2] 徐钰涵.考虑源荷不确定性的微电网多时间尺度优化调度[D].华南理工大学,2023.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值