✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
随着全球能源结构的转型和可再生能源的日益普及,风力发电作为一种清洁、可持续的能源形式,正在迅速发展。然而,风能固有的间歇性和波动性给电力系统的稳定运行带来了严峻挑战。风电的波动性不仅会影响电网的供电质量,增加电网调峰调频的压力,甚至可能导致电网安全事故。为了缓解风电并网带来的负面影响,储能技术被认为是提高风电消纳能力和保证电力系统安全可靠运行的关键解决方案。本文将重点探讨电-氢混合储能系统在平抑风电波动中的应用,并对电-氢混合储能的容量优化配置进行深入分析。
一、风电并网带来的挑战与储能的重要性
风电的波动性主要体现在以下几个方面:
- 间歇性:
风力资源受天气条件的影响显著,风速变化频繁,导致风电输出功率的间歇性波动。
- 随机性:
风力发电功率的预测难度较大,难以准确把握其未来的出力情况。
- 区域性:
不同地区的风力资源分布不均,导致风电出力呈现出明显的区域特性。
这些波动性给电力系统带来诸多挑战:
- 影响电网稳定性:
风电功率的快速波动会导致电网频率和电压波动,严重时可能导致电网崩溃。
- 增加调峰调频压力:
为了弥补风电功率的不足和抑制风电功率的过剩,需要增加电网调峰调频容量,这会增加运行成本。
- 降低电力系统效率:
风电功率的波动会导致发电机的频繁启动和停止,降低发电机的效率。
- 限制风电消纳能力:
由于电网的承受能力有限,过多的风电接入可能会超出电网的稳定运行范围,导致弃风现象。
储能技术能够有效地解决上述问题,其作用主要体现在:
- 平抑风电波动:
储能系统可以吸收风电的过剩功率,并在风电不足时释放功率,从而平滑风电的输出,降低其波动性。
- 提高电网稳定性:
储能系统可以提供快速的频率和电压支撑,增强电网的稳定性。
- 降低调峰调频压力:
储能系统可以参与电网的调峰调频,降低对传统发电机组的依赖。
- 提高风电消纳能力:
储能系统可以增加电网对风电的容纳能力,减少弃风现象。
二、电-氢混合储能系统及其优势
电-氢混合储能系统是指将电化学储能(如电池)与氢储能相结合的储能系统。这种混合储能系统可以充分发挥两种储能技术的优势,实现更高效、更灵活的储能和放电。
电化学储能的优势在于:
- 响应速度快:
可以实现毫秒级的响应,能够快速地吸收和释放电能,适用于平抑短时功率波动,参与电网的频率调节。
- 能量转换效率高:
电化学储能的能量转换效率通常较高,可以减少能量损失。
- 模块化设计:
易于扩展和维护,可以根据实际需求进行灵活配置。
氢储能的优势在于:
- 储能容量大:
可以长时间存储大量的能量,适用于长时储能,解决风电的季节性波动问题。
- 能量储存形式多样:
氢气可以以多种形式储存,如压缩气体、液氢、金属氢化物等,可以根据不同的应用场景选择合适的储存方式。
- 应用范围广:
氢气不仅可以用于发电,还可以用于工业、交通等领域,具有广泛的应用前景。
电-氢混合储能系统的结合,克服了单一储能技术的局限性,实现了以下优势:
- 兼容性互补:
电化学储能可以快速响应,平抑风电的短时波动,而氢储能可以存储大量的能量,解决风电的长期波动,二者相互配合,实现了互补。
- 提高系统整体效率:
通过优化控制策略,可以充分发挥两种储能技术的优势,提高系统的整体效率。
- 降低储能成本:
电-氢混合储能系统可以降低对高功率电化学储能的依赖,减少储能系统的整体成本。
三、电-氢混合储能容量优化配置方法
电-氢混合储能容量优化配置是实现系统经济效益最大化的关键。其目标是在满足风电并网要求和电力系统运行约束的前提下,合理配置电化学储能和氢储能的容量,使得系统的投资成本、运行维护成本以及弃风损失成本之和最小。
容量优化配置需要考虑以下因素:
- 风电功率特性:
详细的风电历史数据是容量优化配置的基础。需要分析风电功率的波动规律、波动幅度、持续时间等,以便确定储能系统的容量需求。
- 电网需求:
需要考虑电网对风电并网的要求,如电压稳定性、频率稳定性、调峰调频能力等。这些要求会影响储能系统的容量和运行策略。
- 经济因素:
需要考虑储能系统的投资成本、运行维护成本、以及弃风损失成本。这些成本是优化配置的重要约束条件。
- 技术约束:
需要考虑电化学储能和氢储能的技术参数,如充放电速率、能量转换效率、循环寿命等。这些参数会影响储能系统的性能和寿命。
常用的容量优化配置方法包括:
- 解析法:
基于数学模型,通过求解最优解来确定储能系统的容量。该方法计算速度快,但难以处理复杂约束条件。
- 优化算法:
利用遗传算法、粒子群算法等优化算法,通过迭代搜索来确定储能系统的容量。该方法能够处理复杂约束条件,但计算时间较长。
- 仿真分析法:
利用电力系统仿真软件,模拟不同容量配置方案下的系统运行情况,通过比较仿真结果来确定储能系统的容量。该方法能够真实反映系统的运行情况,但计算成本较高。
- 混合优化法:
结合解析法、优化算法和仿真分析法的优点,提高容量优化配置的效率和准确性。
在容量优化配置过程中,需要构建合理的优化模型,并选择合适的优化算法。优化模型通常包括以下组成部分:
- 目标函数:
定义储能系统的经济效益目标,如最小化投资成本、运行维护成本和弃风损失成本之和。
- 约束条件:
包括电网运行约束、储能系统技术约束、风电并网约束等。
- 决策变量:
包括电化学储能和氢储能的容量、充放电功率等。
四、电-氢混合储能的应用案例与展望
目前,电-氢混合储能系统已经在一些国家和地区得到应用。例如,德国、日本、美国等国家已经建设了一些示范项目,验证了电-氢混合储能系统在平抑风电波动、提高风电消纳能力方面的可行性。
展望未来,电-氢混合储能系统具有广阔的应用前景:
- 大规模风电场的配套设施:
可以作为大规模风电场的配套设施,平抑风电波动,提高风电的可靠性和稳定性,降低对电网的冲击。
- 偏远地区的独立供电系统:
可以为偏远地区提供独立的电力供应,减少对传统电网的依赖,降低能源成本。
- 智能微网的组成部分:
可以作为智能微网的组成部分,实现能源的优化配置和管理,提高能源利用效率。
- 电网调峰调频的辅助手段:
可以参与电网的调峰调频,提高电网的灵活性和稳定性。
五、结论与建议
电-氢混合储能系统是平抑风电波动、提高风电消纳能力的重要技术手段。通过合理配置电化学储能和氢储能的容量,可以充分发挥两种储能技术的优势,实现系统经济效益的最大化。
为了推动电-氢混合储能技术的应用,建议:
- 加强技术研发:
加强电化学储能和氢储能的关键技术研发,降低储能成本,提高储能效率。
- 制定相关标准:
制定电-氢混合储能系统的相关标准,规范系统的设计、制造、安装和运行。
- 加大政策支持:
加大对电-氢混合储能项目的政策支持,鼓励企业和科研机构开展相关研究和应用。
- 推广示范应用:
积极推广电-氢混合储能技术的示范应用,积累运行经验,为大规模应用奠定基础。
⛳️ 运行结果
🔗 参考文献
[1] 马速良,蒋小平,马会萌,等.平抑风电波动的混合储能系统的容量配置[J].电力系统保护与控制, 2014, 42(8):7.
[2] Tao S , Bin Z , Qin C ,et al.兼顾平抑风电波动和补偿预测误差的混合储能容量经济配比与优化控制[J]. 2016.
[3] 袁铁江,郭建华,杨紫娟,等.平抑风电波动的电-氢混合储能容量优化配置[J].中国电机工程学报, 2024, 44(4):1397-1405.DOI:10.13334/j.0258-8013.pcsee.222572.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇