✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
BP神经网络作为一种强大的非线性建模工具,在回归预测领域得到广泛应用。然而,BP神经网络的训练过程易陷入局部最优,且对初始权值敏感。麻雀搜索算法(SSA)作为一种新兴的元启发式算法,具有寻优能力强、收敛速度快等优点。本文提出一种基于Tent混沌映射改进的麻雀算法(Tent-SSA)优化BP神经网络权值和阈值的方法,旨在提高BP神经网络的回归预测精度。Tent混沌映射能够有效地初始化种群,增强算法的全局搜索能力,防止陷入局部最优。实验结果表明,与标准SSA优化BP神经网络以及其他优化算法相比,Tent-SSA优化BP神经网络在回归预测任务中具有更高的预测精度和更强的泛化能力,为BP神经网络的应用提供了更优的解决方案。
关键词: BP神经网络;麻雀搜索算法;Tent混沌映射;回归预测;优化算法
1. 引言
随着信息技术的快速发展,各行业领域积累了海量数据,如何从这些数据中提取有价值的信息,进行有效的预测分析,成为一个重要的研究课题。回归预测作为数据分析的重要组成部分,旨在建立输入变量和输出变量之间的函数关系,从而实现对未来趋势的预测。BP神经网络(Back Propagation Neural Network)凭借其强大的非线性映射能力和自学习能力,在回归预测领域得到了广泛应用,如时间序列预测、电力负荷预测、金融市场预测等。
然而,BP神经网络也存在一些固有的缺陷。其训练过程依赖于梯度下降法,容易陷入局部最优解,导致预测精度不高。此外,BP神经网络的初始权值和阈值的选择对模型的性能有重要影响,随机初始化可能导致训练过程的低效甚至失败。因此,如何有效地优化BP神经网络的权值和阈值,提高其回归预测精度,是当前研究的热点。
近年来,元启发式算法因其无需梯度信息、全局搜索能力强等优点,被广泛应用于优化神经网络的训练过程。麻雀搜索算法(Sparrow Search Algorithm, SSA)作为一种新兴的元启发式算法,模拟麻雀觅食行为,具有收敛速度快、全局搜索能力强等优点。然而,标准SSA在复杂问题中仍存在易陷入局部最优、收敛精度不足等问题。
为了克服BP神经网络和SSA的不足,本文提出一种基于Tent混沌映射改进的麻雀算法(Tent-SSA)优化BP神经网络的权值和阈值。Tent混沌映射具有良好的遍历性和随机性,可以有效地初始化种群,增加种群的多样性,从而提高算法的全局搜索能力,防止陷入局部最优。通过将Tent-SSA应用于BP神经网络的训练过程,可以有效地优化网络的权值和阈值,提高其回归预测精度。
2. 相关工作
2.1 BP神经网络
BP神经网络是一种基于误差反向传播算法的多层前馈神经网络,由输入层、隐藏层和输出层组成。其学习过程包括前向传播和反向传播两个阶段。在前向传播阶段,输入信号从输入层经过隐藏层逐层传递到输出层,产生输出结果。如果输出结果与期望结果之间存在误差,则进入反向传播阶段,误差信号从输出层沿着连接权重逐层反向传播,并根据误差修正各层神经元的权值和阈值,从而减小预测误差。
BP神经网络具有强大的非线性映射能力,能够逼近任意复杂的函数关系。然而,BP神经网络也存在一些局限性,如容易陷入局部最优、收敛速度慢、对初始权值敏感等。
2.2 麻雀搜索算法 (SSA)
麻雀搜索算法(SSA)是一种模拟麻雀觅食行为的新兴优化算法,其基本思想是将麻雀种群划分为发现者、加入者和警戒者三种角色。发现者负责搜索食物资源,加入者跟随发现者进行觅食,警戒者则负责监控周围环境,发出警报以避免风险。
SSA算法具有寻优能力强、收敛速度快等优点,但仍存在易陷入局部最优、收敛精度不足等问题。
2.3 混沌映射
混沌映射是一种确定性的非线性系统,具有随机性、遍历性和初值敏感性等特点。常用的混沌映射包括Logistic映射、Tent映射等。混沌映射能够产生丰富的混沌序列,可以用于初始化种群,增加种群的多样性,从而提高优化算法的全局搜索能力。
3. 基于Tent混沌映射改进的麻雀算法 (Tent-SSA)
为了提高SSA算法的全局搜索能力和收敛精度,本文提出一种基于Tent混沌映射改进的麻雀算法(Tent-SSA)。Tent-SSA的主要改进在于利用Tent混沌映射初始化种群,增加种群的多样性,从而提高算法的全局搜索能力。
3.1 种群初始化
传统的SSA算法采用随机初始化种群的方法,容易导致种群分布不均匀,影响算法的性能。为了克服这一问题,本文采用Tent混沌映射初始化种群。具体步骤如下:
-
利用Tent混沌映射生成N个混沌序列,其中N为种群规模。
-
将混沌序列映射到搜索空间,生成初始种群。
通过Tent混沌映射初始化种群,可以有效地增加种群的多样性,避免种群过于集中,从而提高算法的全局搜索能力。
3.2 Tent-SSA算法流程
Tent-SSA算法的流程如下:
-
初始化:设置算法参数,包括种群规模N、最大迭代次数Itermax、安全阈值ST等。利用Tent混沌映射初始化种群。
-
计算适应度值:计算每个麻雀的适应度值,适应度函数根据具体的优化问题而定。
-
更新发现者位置:根据发现者更新公式更新发现者的位置。
-
更新加入者位置:根据加入者更新公式更新加入者的位置。
-
更新警戒者位置:根据警戒者更新公式更新警戒者的位置。
-
更新麻雀位置:根据更新后的位置,更新麻雀的位置。
-
判断是否满足终止条件:如果满足终止条件(如达到最大迭代次数或达到预期的精度),则终止算法,输出最优解;否则,返回步骤2。
4. Tent-SSA优化BP神经网络回归预测
本文将Tent-SSA算法应用于BP神经网络的权值和阈值优化,以提高BP神经网络的回归预测精度。具体步骤如下:
-
数据预处理:对输入数据进行归一化处理,消除量纲的影响。
-
BP神经网络结构确定:确定BP神经网络的输入层、隐藏层和输出层节点数,以及隐藏层层数。
-
权值和阈值编码:将BP神经网络的权值和阈值编码为Tent-SSA算法的个体。
-
适应度函数设计:将BP神经网络的回归预测误差作为Tent-SSA算法的适应度函数。通常采用均方误差(MSE)作为适应度函数。
-
Tent-SSA优化BP神经网络:利用Tent-SSA算法优化BP神经网络的权值和阈值。
-
预测:利用优化后的BP神经网络进行回归预测。
-
结果分析:分析预测结果,评价模型的性能。
5. 结论
本文提出一种基于Tent混沌映射改进的麻雀算法(Tent-SSA)优化BP神经网络权值和阈值的方法,旨在提高BP神经网络的回归预测精度。Tent混沌映射能够有效地初始化种群,增加种群的多样性,从而提高算法的全局搜索能力,防止陷入局部最优。实验结果表明,与标准SSA优化BP神经网络以及其他优化算法相比,Tent-SSA优化BP神经网络在回归预测任务中具有更高的预测精度和更强的泛化能力。
未来的研究方向可以包括:
-
将Tent-SSA应用于更复杂的BP神经网络结构,如卷积神经网络(CNN)、循环神经网络(RNN)。
-
将Tent-SSA与其他优化算法进行混合,进一步提高算法的性能。
-
将Tent-SSA应用于其他领域,如分类、聚类等。
⛳️ 运行结果
🔗 参考文献
[1] 苏子龙,严文亮,李慧敏,等.基于改进麻雀搜索算法优化BP神经网络的农业碳排放预测[J].环境科学, 2024(12).DOI:10.13227/j.hjkx.202401258.
[2] 游达章,杨润,张业鹏,等.基于多策略麻雀搜索算法的径向基神经网络时延预测方法[J].仪表技术与传感器, 2024, 000(6):8.
[3] 张新,李虎啸,梁敏.基于改进麻雀搜索算法的矩形件排样优化研究[J].山东建筑大学学报, 2024, 39(6):108-116.DOI:10.12077/sdjz.2024.06.015.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇