使用在线优化的快速模型预测控制MPC附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

模型预测控制(Model Predictive Control,简称MPC)作为一种先进的控制策略,在工业控制、航空航天、机器人等领域展现出强大的应用潜力。其核心思想是利用被控对象的数学模型,预测系统未来一段时间内的行为,并通过求解一个在线优化问题,确定最优的控制输入序列。然而,传统的MPC算法在处理具有复杂动态、高维度或快速响应要求的系统时,往往面临计算负担过重、实时性难以保证的挑战。为了克服这些局限性,近年来,基于在线优化的快速MPC方法应运而生,旨在通过高效的优化算法和计算技术,实现MPC在更广泛的应用场景中的实时部署。本文将深入探讨使用在线优化的快速MPC方法,分析其原理、关键技术、面临的挑战以及未来的发展趋势。

模型预测控制概述

在深入探讨快速MPC之前,有必要简要回顾传统MPC的基本原理。MPC在每个控制周期内执行以下主要步骤:

  1. 状态估计:

    利用传感器测量值和系统模型,估计当前系统的状态。

  2. 模型预测:

    基于当前状态和被控对象的模型,预测系统在未来一个预测时域内的行为。这通常涉及对系统动态方程的数值求解。

  3. 优化问题求解:

    在预测时域内,通过求解一个优化问题,确定一组最优的控制输入序列。该优化问题的目标是最小化某个性能指标(例如,跟踪误差、能量消耗等),同时满足系统的约束条件(例如,执行器限制、状态限制等)。该优化问题通常是一个二次规划(Quadratic Programming, QP)问题或更复杂的非线性规划问题。

  4. 控制输入实施:

    将优化问题求解得到的控制序列的第一个元素应用于被控对象。

  5. 重复:

    在下一个控制周期,重复以上步骤,形成一个闭环控制。

传统MPC的计算负担主要集中在第三步——优化问题的求解。当预测时域较长、系统维度较高或存在复杂的非线性约束时,求解优化问题所需的时间可能超过控制周期的要求,从而导致控制的延迟甚至不稳定。

在线优化的必要性与挑战

快速MPC的核心诉求在于将优化问题的求解时间缩短至控制周期的允许范围内,实现真正的“在线”优化。传统的离线计算或预计算方法,虽然可以降低实时计算量,但在面对系统参数变化、外部扰动或未模型化动态时,鲁棒性较差。因此,实现高效的在线优化成为快速MPC的关键。

在线优化面临的主要挑战包括:

  • 计算复杂度:

    优化问题的规模随着预测时域和系统维度的增加呈指数级增长,直接求解大型优化问题计算量巨大。

  • 非线性与约束:

    许多实际系统具有非线性动力学和复杂的约束条件,使得优化问题更加难以求解。

  • 实时性要求:

    控制周期通常非常短(例如,毫秒级),优化算法必须在如此短的时间内完成求解。

  • 数值稳定性:

    在线优化过程可能受到测量噪声、模型不确定性等因素的影响,算法需要具有良好的数值稳定性。

基于在线优化的快速MPC关键技术

为了克服上述挑战,研究人员提出了多种基于在线优化的快速MPC技术。这些技术主要可以归结为以下几个方面:

  1. 高效的优化算法:

    • 内点法和主动集法:

      这些是求解QP问题的经典算法。为了提高其在线求解效率,研究人员进行了大量的并行化、稀疏化和定制化改进,以充分利用计算资源和问题结构。例如,利用问题的结构稀疏性,可以显著减少计算量。

    • 迭代求解器:

      对于大型QP问题,迭代求解器,如共轭梯度法(Conjugate Gradient method),通常比直接法更有效率。通过结合预处理器和终止条件,可以进一步提高求解速度和精度。

    • 牛顿法与拟牛顿法:

      对于非线性MPC,牛顿法及其变种是常用的优化算法。为了提高其效率,研究人员探索了基于矩阵块操作、并行计算以及使用近似黑塞矩阵(Hessian matrix)的方法。

    • ADMM(Alternating Direction Method of Multipliers):

      ADMM是一种适用于分布式和并行计算的优化算法,通过将原问题分解为多个子问题,可以有效地处理大型凸优化问题,尤其适用于具有可分离结构的MPC问题。

  2. 问题结构利用与分解:

    • 预测时域的特殊结构:

      MPC问题在预测时域内具有天然的时序结构,可以利用这一结构对问题进行分解或并行化。例如,可以使用动态规划的思想,或者将预测时域分解为多个子问题,分别求解后再进行协调。

    • 系统稀疏性:

      许多实际系统的动态模型是稀疏的,即状态变量之间的相互作用有限。利用这种稀疏性可以减少矩阵运算的复杂度。

    • 约束的处理:

      有效地处理约束是MPC优化的关键。可以采用主动集法、罚函数法或内点法等方法。对于特定的约束类型,可以设计定制化的求解算法。

  3. 硬件加速与并行计算:

    • 多核处理器和GPU:

      现代计算平台普遍具备多核处理器和图形处理器(GPU)。通过将优化算法并行化,可以将计算任务分配到不同的处理器上,显著缩短求解时间。例如,许多矩阵运算可以有效地在GPU上进行并行计算。

    • FPGA(Field-Programmable Gate Array)和ASIC(Application-Specific Integrated Circuit):

      对于对实时性要求极高的应用,可以考虑使用FPGA或ASIC等硬件加速器来定制实现优化算法,从而获得更高的计算效率和更低的功耗。

  4. 模型简化与近似:

    • 线性化与QP MPC:

      将非线性系统在工作点附近进行线性化,可以将非线性MPC问题转化为QP问题,从而可以使用更成熟和高效的QP求解器。虽然存在模型失配问题,但在合适的条件下可以获得良好的性能。

    • 模型降阶:

      对于高维度系统,可以采用模型降阶技术,保留系统的主要动态特性,从而降低优化问题的维度。

    • 近似预测:

      在某些情况下,可以采用近似的模型预测方法,例如使用简化的模型或进行分段线性化,以减少预测的计算量。

  5. 算法的鲁棒性与稳定性考虑:

    • 收敛性分析:

      在线优化算法必须保证在有限时间内收敛到最优解或近似最优解。对于迭代算法,需要对其收敛性进行严格分析。

    • 数值稳定性:

      在浮点运算环境下,算法容易受到数值误差的影响。需要选择数值稳定的算法和数据结构。

    • 实时可行性:

      除了求解速度,还需要考虑算法在实际硬件平台上的实现效率、内存占用等问题,确保其在实时环境下的可行性。

快速MPC的应用场景

基于在线优化的快速MPC方法已经在多个领域取得了显著的应用成果:

  • 自动驾驶:

    在车辆轨迹跟踪、避障、路径规划等任务中,需要对车辆的复杂动力学进行实时控制,快速MPC能够有效地处理车辆的非线性和约束,实现高精度的运动控制。

  • 机器人控制:

    机器人关节的轨迹跟踪、力控制、视觉伺服等都需要快速响应和鲁棒控制。快速MPC能够处理机器人的复杂动力学和多关节耦合,实现灵活精确的运动。

  • 航空航天:

    飞行器的姿态控制、轨迹跟踪、故障处理等对控制系统的实时性和鲁棒性要求极高。快速MPC能够有效地应对气动力的变化和外部扰动。

  • 电力系统:

    微电网控制、并网逆变器控制等需要快速响应电网变化,实现功率的精确调控。快速MPC能够处理电力系统的非线性动态和约束。

  • 工业过程控制:

    化工过程、冶金过程等通常具有复杂的多变量耦合和非线性动态,快速MPC能够实现高效的优化控制,提高生产效率和产品质量。

面临的挑战与未来发展趋势

尽管基于在线优化的快速MPC取得了显著进展,但仍然面临一些挑战:

  • 非凸优化:

    对于具有非凸约束或非凸目标函数的系统,求解优化问题更加困难,目前的研究主要集中在寻找局部最优解或使用近似算法。

  • 模型不确定性与扰动:

    实际系统往往存在模型不确定性、外部扰动或未模型化动态,如何提高快速MPC对这些不确定性的鲁棒性仍然是一个重要的研究方向。

  • 约束满足的保证:

    在某些关键应用中,必须严格满足约束条件。如何在保证求解速度的同时,严格满足约束是一个挑战。

  • 算法的易用性与通用性:

    不同的系统具有不同的特点和约束,设计通用的、易于使用的快速MPC算法仍然需要进一步研究。

  • 与机器学习的结合:

    将机器学习技术与MPC结合,例如使用深度学习进行模型预测、约束学习或优化算法的加速,是未来的发展趋势之一。

未来的发展趋势可能包括:

  • 更加高效和鲁棒的在线优化算法:

    研究针对特定问题结构的优化算法,提高算法的收敛速度和鲁棒性。

  • 硬件软件协同设计:

    将优化算法与计算硬件进行协同设计,充分利用硬件的并行计算能力。

  • 基于学习的MPC:

    探索将机器学习技术应用于MPC的各个环节,例如模型学习、策略学习等,以提高控制性能和鲁棒性。

  • 分布式和协同MPC:

    针对大型互联系统,发展分布式和协同MPC算法,实现系统的整体优化。

  • 安全性和可靠性:

    在关键应用中,需要进一步研究快速MPC的安全性和可靠性保证。

结论

基于在线优化的快速模型预测控制是应对复杂动态系统实时控制挑战的有效途径。通过采用高效的优化算法、利用问题结构、结合硬件加速以及模型简化等技术,快速MPC在计算效率上取得了显著突破,使其能够应用于对实时性要求极高的领域。尽管仍然面临非凸优化、模型不确定性等挑战,但随着优化理论、计算技术以及机器学习等领域的不断发展,基于在线优化的快速MPC有望在未来得到更广泛的应用和更深入的研究,为解决更复杂的控制问题提供强大的工具。实现真正的“智能”控制,将MPC的强大预测和优化能力与实时响应相结合,是未来控制领域的重要发展方向。

⛳️ 运行结果

🔗 参考文献

[1] 代高富,符金伟,周胜,等.基于模型预测控制的 MMC-HVDC 系统控制策略研究[J].电力系统保护与控制, 2016, 44(10):7.DOI:10.7667/PSPC151146.

[2] 代高富,符金伟,周胜,等.基于模型预测控制的 MMC-HVDC 系统控制策略研究[J].电力系统保护与控制, 2016.

[3] 付波,张敏,李波,等.基于动态阻抗匹配和两步模型预测控制的最大功率点跟踪算法[J].水电能源科学, 2014.DOI:CNKI:SUN:SDNY.0.2014-10-050.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

Model predictive control (MPC) has a long history in the field of control en- gineering. It is one of the few areas that has received on-going interest from researchers in both the industrial and academic communities. Four major as- pects of model predictive control make the design methodology attractive to both practitioners and academics. The first aspect is the design formulation, which uses a completely multivariable system framework where the perfor- mance parameters of the multivariable control system are related to the engi- neering aspects of the system; hence, they can be understood and ‘tuned’ by engineers. The second aspect is the ability of the method to handle both ‘soft’ constraints and hard constraints in a multivariable control framework. This is particularly attractive to industry where tight profit margins and limits on the process operation are inevitably present. The third aspect is the ability to perform on-line process optimization. The fourth aspect is the simplicity of the design framework in handling all these complex issues. This book gives an introduction to model predictive control, and recent developments in design and implementation. Beginning with an overview of the field, the book will systematically cover topics in receding horizon con- trol, MPC design formulations, constrained control, Laguerre-function-based predictive control, predictive control using exponential data weighting, refor- mulation of classical predictive control, tuning of predictive control, as well as simulation and implementation using MATLAB and SIMULINK as a platform. Both continuous-time and discrete-time model predictive control is presented in a similar framework.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值