【多音音频测试信号】具有指定采样率和样本数的多音信号,生成多音信号的相位降低波峰因数研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

在现代音频技术、通信系统以及电声测量领域中,多音信号(Multitone Signal)扮演着至关重要的角色。它由一系列具有特定频率、幅度和相位的正弦波叠加而成,能够有效地模拟真实环境中的复杂声音信号,并用于测试和评估系统的性能。例如,在音频压缩算法的测试中,多音信号可以用于检测算法在高频、低频以及不同频率组合下的失真和噪声;在通信系统中,多音信号被广泛应用于评估信道的线性度、互调失真等参数;在电声测量中,多音信号则常用于音箱、麦克风等设备的频响测试和非线性失真分析。

然而,多音信号的一个固有特性是其较高的波峰因数(Peak-to-Average Power Ratio, PAPR)。波峰因数定义为信号峰值功率与平均功率之比,是衡量信号动态范围的关键指标。高波峰因数意味着信号在某些时刻的瞬时幅度远高于其平均幅度,这给信号处理链中的各个环节带来了挑战。例如,在数字-模拟转换(DAC)和模拟-数字转换(ADC)过程中,高波峰因数可能导致量化饱和,引入非线性失真;在功率放大器中,高波峰因数可能迫使放大器工作在其非线性区域,降低效率并产生失真;在无线通信中,高波峰因数会增加发射机的功耗和成本,并对非线性功率放大器的设计提出更高的要求。因此,降低多音信号的波峰因数具有重要的理论和实践意义。

本研究旨在探讨具有指定采样率和样本数的多音音频测试信号的生成方法,并重点研究通过调整多音信号的相位来降低其波峰因数的方法。我们将首先回顾多音信号的基本构成原理,然后详细阐述不同相位优化算法的原理及其在降低波峰因数方面的效果,并结合具体的仿真实验,对各种方法进行评估和比较。最后,我们将对研究结果进行总结,并展望未来的研究方向。

一、多音音频测试信号的生成

多音信号是多个正弦波信号的线性叠加。

生成指定采样率和样本数的多音信号需要确定以下参数:

  1. 音的数量 (NN):

     选择多少个音取决于测试的目的。例如,进行宽带频率响应测试可能需要覆盖较宽频率范围的多个音。

  2. 每个音的幅度 (AkAk):

     幅度可以相同,形成等幅多音信号,也可以不同,用于模拟具有特定功率谱分布的信号。

  3. 每个音的初始相位 (ϕkϕk):

     初始相位是多音信号波峰因数的关键影响因素。随机选择的相位通常会导致较高的波峰因数。通过优化相位,可以有效地降低波峰因数,这也是本研究的重点。

多音信号的生成过程可以通过计算每个正弦波在每个时间样本点的数值,然后将它们叠加来实现。这个过程可以通过编程语言(如Python, MATLAB)或者专用的信号生成软件来完成。

二、多音信号的波峰因数

高波峰因数意味着信号在某些时刻的瞬时幅度远高于其平均幅度。对于一个由NN个等幅正弦波叠加的多音信号,在最坏情况下,所有正弦波在某个时间点达到峰值并同相叠加,此时信号的峰值幅度可以达到单个正弦波峰值幅度的NN倍,而平均功率与NN成正比。理论上,等幅多音信号的波峰因数上限可以达到NN,即PAPRdB≤10log⁡10(N)。然而,在实际中,随机相位下的波峰因数通常低于理论上限,但仍然相对较高。

三、相位优化降低波峰因数的研究

多音信号的波峰因数与其每个组成正弦波的相对相位密切相关。通过巧妙地选择或调整这些相位,可以使得不同正弦波的峰值尽可能地分散开,或者在瞬时幅度较大时,部分正弦波之间产生相消干涉,从而降低整个信号的峰值幅度,进而降低波峰因数。

相位优化方法大致可以分为以下几类:

1. 随机相位选择:

最简单的方法是为每个音随机选择一个在[0,2π))范围内的初始相位。虽然这种方法实现简单,但所得信号的波峰因数具有随机性,且通常较高。进行多次随机相位生成并选择波峰因数最低的结果是一种简单的尝试,但效率较低,尤其在音数较多时。

2. 基于确定性序列的相位:

这类方法利用一些具有良好自相关和互相关特性的确定性序列来确定多音信号的相位。例如,巴克码(Barker Code)和伪随机序列(PN Sequence)等。将这些序列映射到相位上,可以得到具有一定波峰因数降低效果的多音信号。然而,这种方法的优化效果通常不如迭代优化方法。

3. 基于迭代优化的相位调整:

这类方法通过迭代地调整每个音的相位,使得目标函数(通常是波峰因数或峰值幅度)最小化。常见的迭代优化算法包括:

  • 交替投影法(Alternating Projection Method): 这是一种经典的相位优化算法。其基本思想是在满足频谱约束(例如,每个音的幅度和频率固定)和时域约束(例如,限制峰值幅度)之间交替投影。例如,一种实现方式是在时域将超过某个阈值的信号点进行削波或限幅,然后在频域进行反傅里叶变换,恢复每个音的幅度和频率,然后再次在时域进行限制,重复迭代直到收敛。

  • 基于梯度的优化方法: 将波峰因数或峰值幅度作为目标函数,利用梯度下降或其他梯度优化算法来寻找最优相位。然而,由于波峰因数是一个非光滑函数,直接计算其梯度可能比较困难。通常需要使用一些近似或替代的目标函数,例如瞬时幅度的最大值或其某个高次方的平均值。

  • 遗传算法和粒子群优化等群体智能算法: 这些算法具有全局搜索能力,可以用于在相位空间中搜索最优解。它们不受目标函数光滑性的限制,但计算复杂度通常较高。

  • 迭代限幅与滤波(Iterative Clipping and Filtering, ICF): 这是一种常用的波峰因数降低算法。它通过迭代地在时域对信号进行限幅,然后在频域对限幅引起的频谱扩展进行滤波,从而恢复原始的频谱特性。在每次迭代中,通过调整限幅阈值和相位,逐步降低波峰因数。

  • 选定映射(Selected Mapping, SLM): SLM方法事先生成多组具有不同随机相位的多音信号,然后选择波峰因数最低的一组作为最终信号。为了减少需要生成的信号组数,可以使用一些具有良好特性的相位序列,例如Walsh-Hadamard序列等。SLM方法实现简单,但需要额外的计算和存储资源来生成和存储多个信号。

  • 部分传输序列(Partial Transmit Sequence, PTS): PTS方法将多音信号分成若干个子块,每个子块与一个相位因子相乘,然后将这些子块叠加。通过优化这些相位因子,可以降低整个信号的波峰因数。PTS方法比SLM方法需要更少的计算量,但其性能取决于子块的划分和相位因子的选择。

在实际应用中,选择哪种相位优化算法取决于对性能、计算复杂度和实现难度的权衡。例如,ICF算法在降低波峰因数方面表现良好,但计算量相对较大;SLM算法实现简单,但需要额外的资源。

四、预期结果与讨论

通过仿真实验,我们预期可以得到以下结果:

  • 随机相位下的多音信号通常具有较高的波峰因数,并且在不同次生成中具有一定的波动性。

  • 基于确定性序列的相位方法可以提供一定的波峰因数降低效果,但通常不如迭代优化方法。

  • 基于迭代优化的相位调整方法能够显著降低多音信号的波峰因数,尤其是在音数较多时。不同的迭代算法在优化效果和计算复杂度方面可能存在差异。例如,ICF算法可能在降低波峰因数方面表现优秀,但收敛速度和计算量需要权衡。

  • SLM和PTS等基于候选项选择的方法可以通过增加候选项数量来提高性能,但会增加计算和存储需求。

  • 优化后的多音信号在时域波形上可能表现出更平缓的峰值,避免了尖锐的瞬时幅度。

  • 波峰因数的降低有助于提高信号处理系统的动态范围和线性度,减少失真和提高效率。

在讨论中,我们将重点分析不同相位优化算法的原理、优缺点、适用场景以及它们在降低波峰因数方面的具体表现。我们将探讨计算复杂度、收敛性以及实际应用中需要考虑的因素,例如实时性要求等。此外,我们还将讨论相位优化对信号的其他特性(例如,频谱形状、互相关性等)可能产生的影响。

五、结论与展望

本研究将通过理论分析和仿真实验,深入探讨具有指定采样率和样本数的多音音频测试信号的生成方法,并重点研究通过调整多音信号的相位来降低其波峰因数的方法。研究结果将为生成低波峰因数的多音测试信号提供理论依据和实践指导,有助于改善音频设备和通信系统的测试和评估效率。

未来的研究方向可以包括:

  • 探索更先进、更高效的相位优化算法,例如结合机器学习技术的相位优化方法。

  • 研究多音信号在实际音频设备和通信系统中的应用效果,评估低波峰因数多音信号对系统性能的提升。

  • 考虑在降低波峰因数的同时,保持信号的其他重要特性,例如良好的频谱特性和互相关性。

  • 研究如何将相位优化技术应用于更复杂的信号类型,例如非同步多音信号或具有特定功率谱分布的多音信号。

  • 探索如何在嵌入式系统或硬件中高效地实现相位优化算法,以满足实时应用的需求。

⛳️ 运行结果

🔗 参考文献

[1] 杨册.广域电磁法有效信号提取中的FIR数字滤波技术研究[D].中南大学,2012.DOI:10.7666/d.y2197411.

[2] 李益华.MATLAB辅助现代工程数字信号处理[M].西安电子科技大学出版社,2010.

[3] 杜强,吕海明,柯丽,等.生物阻抗谱多频激励信号设计方法研究[J].医疗卫生装备, 2020, 41(9):8.DOI:CNKI:SUN:YNWS.0.2020-09-001.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值