✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
摘要: 随着现代电力系统规模的日益扩大和互联程度的不断提高,对系统运行状态进行准确、实时的估计成为保障电网安全稳定运行的关键。然而,实际电力系统中存在大量的测量误差、网络结构不确定性以及分布式发电接入带来的随机性,这些因素严重影响了传统状态估计算法的精度和鲁棒性。近年来,分布式鲁棒优化作为一种有效的处理不确定性的方法,在电力系统状态估计领域展现出巨大的潜力。本文深入探讨了分布式鲁棒优化在电力系统状态估计中的应用,分析了其理论基础和优势,并对几种常见的分布式鲁棒优化状态估计算法进行了比较研究。研究表明,分布式鲁棒优化能够有效地抵御不确定性因素的影响,提高状态估计的准确性和可靠性,为现代电力系统的安全运行提供了有力支撑。
关键词: 分布式鲁棒优化;电力系统;状态估计;不确定性;算法比较;分布式算法
引言
电力系统状态估计(Power System State Estimation, PSSE)是能量管理系统(Energy Management System, EMS)的核心功能之一,其主要任务是利用量测数据,通过数学模型计算出电力系统运行状态的最佳估计值,即各个节点的电压幅值和相角。这些状态变量是电力系统潮流计算、最优潮流、稳定分析等高级应用的基础。传统的电力系统状态估计算法,如加权最小二乘法(Weighted Least Squares, WLS),在量测误差符合特定统计分布(如高斯分布)且系统模型已知的情况下能够取得较好的效果。然而,随着现代电力系统朝着高度互联、大量接入分布式电源(Distributed Generators, DGs)、负荷具有高度随机性等方向发展,电力系统运行的不确定性日益凸显。
这些不确定性主要来源于以下几个方面:
- 量测误差的复杂性:
除了传感器本身的误差,通信延迟、数据包丢失、网络攻击等因素也可能导致量测数据失真,且误差分布可能偏离理想的高斯分布。
- 模型参数的不确定性:
电力系统元件的参数(如线路阻抗、变压器参数)会随时间和运行条件变化,且精确建模困难。
- 分布式发电的随机性:
风电、光伏等可再生能源发电具有高度的波动性和不确定性,对其出力进行精确预测具有挑战性。
- 负荷的随机性:
用户负荷具有随机性和时变性,尤其是在大量采用智能家居和电动汽车的情况下,负荷预测难度增加。
- 拓扑结构的不确定性:
开关操作、故障等可能导致网络拓扑结构发生变化,且这种变化可能无法及时准确地反映在状态估计模型中。
这些不确定性因素如果不能得到有效处理,将导致状态估计结果出现偏差,甚至可能导致系统误判或采取错误的控制策略,危及电网的安全稳定运行。传统的确定性状态估计算法难以有效地应对这些不确定性,因此,研究和开发具有鲁棒性的状态估计算法成为当务之急。
鲁棒优化(Robust Optimization)是一种处理不确定性优化问题的有效方法。其核心思想是假设不确定性参数在一个已知的不确定性集合(Uncertainty Set)内变化,寻找在最坏情况下仍然满足约束条件且目标函数最优的解决方案。与随机优化(Stochastic Optimization)需要已知不确定性参数的精确概率分布不同,鲁棒优化仅需要知道不确定性参数可能变化的范围,对不确定性分布的依赖性较低,更适合处理难以获得精确概率分布的不确定性问题。
近年来,将鲁棒优化应用于电力系统状态估计领域的研究逐渐增多。鲁棒状态估计旨在寻找在各种可能的不确定性场景下,都能获得较好估计精度的状态变量。然而,电力系统规模庞大,集中式鲁棒状态估计算法面临计算复杂度高、通信带宽需求大、隐私保护等挑战。为了解决这些问题,分布式状态估计(Distributed State Estimation)方法应运而生。分布式状态估计将整个电力系统划分为多个区域或子系统,每个区域内的控制器或代理只处理本地量测和信息,并通过与其他相邻区域进行有限的信息交换来协同完成全局状态估计。分布式方法具有可扩展性强、计算负担分散、通信开销降低、一定程度上提高了隐私性等优势。
将鲁棒优化与分布式状态估计相结合,形成了分布式鲁棒优化电力系统状态估计(Distributed Robust Optimization based Power System State Estimation)。这种方法旨在利用分布式计算架构解决大规模电力系统状态估计中的不确定性问题,在保证估计精度的同时提高算法的可扩展性和效率。本文将重点探讨分布式鲁棒优化在电力系统状态估计中的应用,分析其理论基础和关键技术,并对几种典型的分布式鲁棒优化状态估计算法进行比较研究,旨在为该领域的研究和实践提供参考。
分布式鲁棒优化状态估计的理论基础
分布式鲁棒优化状态估计的核心是将电力系统的状态估计问题建模为一个鲁棒优化问题,并通过分布式算法求解。
2. 分布式求解方法
求解上述大规模的分布式鲁棒优化问题具有挑战性。常见的分布式求解方法包括:
- 基于对偶分解的方法:
例如交替方向乘子法(Alternating Direction Method of Multipliers, ADMM)。ADMM通过引入拉格朗日乘子和惩罚项,将原问题分解为多个子问题,每个子问题可以在本地并行求解,并通过迭代更新拉格朗日乘子和对偶变量来实现区域之间的协调。
- 基于一致性算法的方法:
例如次梯度一致性算法。这种方法通过各区域计算本地目标的次梯度,并与相邻区域交换信息,逐步达到全局一致性。
- 基于优化分解的方法:
将原问题分解为多个与区域相关的子问题,并通过迭代求解这些子问题并交换边界信息来逼近全局最优解。
将鲁棒优化与这些分布式算法相结合,可以形成分布式鲁棒优化状态估计算法。例如,在ADMM框架下,可以将全局鲁棒状态估计问题分解为多个区域的子问题,每个子问题负责解决本地的鲁棒估计问题,并通过ADMM的迭代过程处理区域之间的耦合和不确定性。
几种分布式鲁棒优化状态估计算法比较
针对不同的不确定性建模和分布式求解策略,已经提出了多种分布式鲁棒优化状态估计算法。以下对其中几种具有代表性的算法进行比较:
3.1 基于椭球不确定性集合和ADMM的分布式鲁棒状态估计
测协方差矩阵,ϵiϵi 是不确定性裕度。在ADMM框架下,可以将全局鲁棒状态估计问题分解为区域子问题和耦合变量一致性问题。区域子问题是关于本地状态变量的鲁棒优化问题,可以通过对偶转换转化为易于求解的形式。一致性问题则通过ADMM的乘子更新来实现。
优点:
-
椭球不确定性集合能够反映量测误差的相关性。
-
ADMM是一种成熟有效的分布式优化算法,具有较好的收敛性。
-
分解后的子问题通常可以转化为凸优化问题(尤其是在DC潮流模型下),易于求解。
缺点:
-
椭球不确定性集合的参数(如协方差矩阵和裕度)难以精确获取。
-
在AC潮流模型下,子问题仍然是非凸的,求解难度较大。
-
ADMM的收敛速度可能受到参数选择的影响。
3.2 基于预算不确定性集合和分布式次梯度方法的鲁棒状态估计
算法概述: 这种方法假设不确定性存在于部分量测中,且不确定性误差的总“大小”受到限制,例如采用预算不确定性集合。求解器通常采用分布式次梯度方法。每个区域计算其本地目标函数的次梯度,并与相邻区域交换本地状态估计值和次梯度信息,然后根据一致性协议更新本地状态估计。
优点:
-
预算不确定性集合能够捕捉稀疏的不确定性,更符合某些场景(如网络攻击只影响部分量测)的特点。
-
次梯度方法对目标函数的可微性要求较低,适用于非光滑目标函数。
-
分布式次梯度方法实现相对简单。
缺点:
-
次梯度方法的收敛速度通常较慢。
-
选择合适的步长对于算法的收敛性和性能至关重要。
-
预算不确定性集合的参数(如预算大小)难以精确确定。
3.3 基于分布鲁棒优化(Distributionally Robust Optimization, DRO)的分布式状态估计
算法概述: 分布鲁棒优化是一种更高级的处理不确定性的方法,它不假设不确定性参数的精确概率分布已知,而是假设其概率分布位于一个模糊集(Ambiguity Set)中。模糊集由有限的样本数据或已知的概率分布特征(如均值、方差)构造。DRO的目标是在模糊集中的最坏概率分布下,最小化期望的量测残差。将其应用于分布式状态估计,则需要在每个区域处理本地量测误差分布的不确定性,并通过分布式算法协调。
优点:
-
DRO对不确定性概率分布的假设更弱,更贴近实际。
-
能够利用历史数据或专家知识构建模糊集,提高模型的准确性。
缺点:
-
DRO问题的建模和求解通常比传统的鲁棒优化问题更复杂。
-
构建合理的模糊集需要一定的领域知识和数据分析。
-
将其与分布式算法相结合需要进一步研究。
3.4 基于交流潮流模型的分布式鲁棒状态估计算法
算法概述: 大多数现有的分布式鲁棒状态估计算法基于简化的DC潮流模型,这牺牲了一定的精度。直接处理基于AC潮流模型的鲁棒状态估计问题由于其非凸性更具挑战性。一些研究尝试将AC潮流模型下的鲁棒状态估计问题转化为凸松弛问题(如半定规划)或采用迭代线性化的方法,然后在此基础上设计分布式算法(如分布式ADMM)。
优点:
-
基于AC潮流模型的算法能够提供更准确的状态估计结果。
缺点:
-
非凸性导致求解困难,可能陷入局部最优。
-
凸松弛方法可能引入松弛误差。
-
迭代线性化方法依赖于初始值且可能不收敛。
挑战与展望
尽管分布式鲁棒优化在电力系统状态估计中展现出巨大的潜力,但仍面临一些挑战和未来的研究方向:
- 复杂不确定性的建模:
如何更准确地建模电力系统中多种不确定性因素的相互作用和时变性,例如同时考虑量测误差、模型参数不确定性和分布式电源出力随机性等,是未来的重要研究方向。
- AC潮流模型的鲁棒处理:
现有方法大多基于简化的DC潮流模型。如何设计高效且可靠的分布式鲁棒状态估计算法来处理AC潮流模型下的非凸性和不确定性是一个亟待解决的问题。
- 实时性和计算效率:
电力系统状态估计需要具备实时性,而鲁棒优化问题通常计算复杂度较高。如何设计具有良好实时性能的分布式鲁棒状态估计算法,利用并行计算和优化技术加速求解,是关键挑战。
- 鲁棒性的度量与评估:
如何定量评估不同算法的鲁棒性,以及鲁棒性提升对估计精度的影响,需要建立完善的评估指标和方法。
- 网络拓扑结构不确定性的处理:
开关操作和故障导致的拓扑变化会引入模型结构的不确定性。如何将这种不确定性纳入分布式鲁棒优化状态估计框架,并设计能够快速适应拓扑变化的算法,是一个重要的研究方向。
- 网络安全与隐私保护:
在分布式状态估计中,各区域需要交换信息,这涉及到网络安全和隐私保护问题。如何在保证鲁棒性的同时,考虑数据传输的安全性和隐私性,需要进一步研究。
- 与高级应用的融合:
如何将分布式鲁棒状态估计结果无缝地集成到电力系统的其他高级应用中,如鲁棒最优潮流、鲁棒稳定分析等,并提升这些应用的性能,是未来的应用前景。
结论
电力系统状态估计是保障电网安全稳定运行的基石。面对现代电力系统日益增长的不确定性,传统的确定性状态估计算法难以满足需求。分布式鲁棒优化作为一种有效的处理不确定性的方法,为解决大规模电力系统状态估计中的鲁棒性问题提供了新的思路。本文深入探讨了分布式鲁棒优化在电力系统状态估计中的应用,分析了其理论基础,并对基于椭球不确定性集合和ADMM、基于预算不确定性集合和分布式次梯度方法、基于分布鲁棒优化以及基于AC潮流模型的分布式鲁棒状态估计算法进行了比较研究。研究表明,分布式鲁棒优化能够有效地提高状态估计的准确性和可靠性,应对不确定性带来的挑战。
尽管分布式鲁棒优化状态估计领域已经取得显著进展,但仍有诸多挑战需要克服,包括复杂不确定性的建模、AC潮流模型的鲁棒处理、实时性和计算效率的提升、鲁棒性的度量与评估、网络拓扑结构不确定性的处理、网络安全与隐私保护以及与高级应用的融合等。未来的研究应致力于开发更高效、更准确、更实用的分布式鲁棒优化状态估计算法,以适应未来智能电网的发展需求,为电力系统的安全、稳定和经济运行提供坚实的技术支撑。
⛳️ 运行结果
🔗 参考文献
[1] 李嘉伟,巨云涛,张璐,等.基于分布鲁棒模型预测控制的微电网多时间尺度优化调度[J].电力工程技术, 2024, 43(4):45-55.DOI:10.12158/j.2096-3203.2024.04.005.
[2] 郭毅成,朱自伟,王凯,等.一种基于分布鲁棒的"源-网-荷-储"两阶段调度优化方法:CN202210781941.8[P].CN202210781941.8[2025-04-24].
[3] 于丹文,杨明,翟鹤峰,等.鲁棒优化在电力系统调度决策中的应用研究综述[J].电力系统自动化, 2016, 40(7):11.DOI:10.7500/AEPS20150728008.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇