含共享储能的园区多类型负荷需求响应经济运行研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍


 随着能源互联网的快速发展和电力市场改革的深入,园区作为重要的能源消费单元,其能源管理模式正经历深刻变革。本文旨在探讨含共享储能的园区多类型负荷需求响应经济运行策略。首先,分析了园区内多类型负荷(如工业负荷、商业负荷、居民负荷等)的特性及其参与需求响应的潜力。其次,详细阐述了共享储能系统在园区中的应用优势,包括提升储能利用率、降低投资成本、增强电网灵活性等。在此基础上,构建了一个考虑需求响应和共享储能的园区经济运行优化模型,旨在实现园区运行成本最小化和可再生能源消纳最大化。模型中充分考虑了不同类型负荷的需求响应能力、储能系统的充放电特性以及市场电价波动等因素。最后,通过案例分析,验证了所提出策略的有效性,结果表明,引入共享储能和实施多类型负荷需求响应能够显著降低园区综合运行成本,提高可再生能源利用率,并为未来园区能源管理提供了新的思路和技术支撑。

关键词: 共享储能;园区;多类型负荷;需求响应;经济运行;优化


1. 引言

近年来,全球能源结构转型加速,可再生能源发电量占比持续提升,但其固有的间歇性和波动性给电网的稳定运行带来了挑战。与此同时,电力市场化改革不断深化,需求侧管理在平衡电力供需、优化能源配置中的作用日益凸显。园区作为工业、商业、居民等多种负荷类型集聚的区域,其能源消费模式复杂多样,具备开展需求响应的巨大潜力。传统的需求响应往往侧重于单一类型负荷,未能充分挖掘多类型负荷的协同效应。此外,储能技术的发展为应对可再生能源波动性和提升电网灵活性提供了有效手段,但高昂的建设成本和较低的利用率限制了其大规模推广应用。

在此背景下,共享储能模式应运而生。通过集中建设、统一管理和多用户共享,共享储能能够有效分摊投资成本,提高储能资源的利用效率,为园区内部各类负荷提供灵活的储能服务。将共享储能与多类型负荷需求响应相结合,有望在园区层面实现能源的优化配置和高效利用,降低用能成本,提升能源系统的韧性。

本文旨在深入研究含共享储能的园区多类型负荷需求响应经济运行策略。通过构建精细化的优化模型,考虑多类型负荷特性、共享储能运行机制以及市场环境变化,旨在为园区能源管理提供一套经济高效、可持续发展的解决方案。

2. 园区多类型负荷特性分析与需求响应潜力

园区内通常包含工业负荷、商业负荷、居民负荷等多种类型。这些负荷在用电特性、响应能力和对电价的敏感度上存在显著差异。

  • 工业负荷:

     具有用电量大、生产连续性强、负荷波动相对平缓等特点。部分工业负荷(如电炉、制冷设备、充电桩等)具有一定的可中断或可调节潜力,可通过调整生产计划或设备运行状态参与需求响应。其响应主要受生产工艺和成本效益驱动。

  • 商业负荷:

     负荷特性与营业时间、季节、天气等因素密切相关,具有明显的峰谷特征。例如,商场、办公楼的空调、照明系统等具有较大的调节潜力,可以通过智能控制系统实现负荷转移或削减。其响应主要受经济激励和舒适度限制。

  • 居民负荷:

     负荷量相对较小但数量庞大,具有分散性、随机性和多样性。居民用户可调节的负荷包括空调、热水器、电动汽车充电等。其参与需求响应的意愿受电价激励、智能家居设备普及率和用户习惯影响。

多类型负荷的协同响应可以形成更强大的需求响应能力。例如,在电力负荷高峰期,工业负荷可进行短期停产或降低生产负荷,商业负荷可调整空调温度或照明亮度,居民负荷可延迟电动汽车充电时间。这种协同作用能够有效地削减峰值负荷,填充低谷负荷,从而平抑电力需求曲线,降低园区整体用电成本。

3. 共享储能系统在园区中的应用优势

共享储能是一种创新的储能应用模式,其核心思想是打破传统储能“专机专用”的限制,通过构建公共储能电站,为多个用户提供储能服务。在园区中,共享储能具有以下显著优势:

  • 降低投资成本:

     园区内各用户单独建设储能设施成本高昂,且利用率可能不高。共享储能通过规模化建设,可以降低单位容量的投资成本,并通过租赁、购买服务等模式降低用户的前期投入。

  • 提升储能利用率:

     园区内不同负荷类型的用电特性存在互补性。例如,当某一用户用电低谷时,其储能系统可能处于闲置状态,而共享储能可以将其容量提供给其他有需求的用户。这种灵活调度可以大幅提高储能设备的整体利用效率。

  • 增强电网灵活性:

     共享储能可作为园区电网的“调节器”,在可再生能源出力波动时进行充放电,平抑电网波动;在电价高峰期放电,在低谷期充电,实现套利;同时,也能为园区提供备用容量,提升供电可靠性。

  • 促进可再生能源消纳:

     园区内分布式光伏、风电等可再生能源发电受天气影响较大。共享储能可以有效储存多余的可再生能源,并在需要时释放,从而提高园区内可再生能源的自发自用比例,减少弃风弃光。

  • 提供辅助服务:

     共享储能还可以参与电力市场的辅助服务,如调频、备用等,为园区带来额外的经济收益。

4. 含共享储能的园区多类型负荷需求响应经济运行优化模型

为了实现含共享储能的园区多类型负荷需求响应的经济运行,本文构建了一个以园区综合运行成本最小化为目标的优化模型。模型主要考虑以下几个方面:

图片

4.2 约束条件

  • 功率平衡约束:

     园区在每个时刻的供电与用电需保持平衡,即园区从电网购电功率、园区内可再生能源发电功率、储能放电功率之和应等于园区负荷需求、储能充电功率之和。

  • 共享储能运行约束:

     包括储能容量约束、充放电功率约束、充放电效率约束、荷电状态(SOC)约束以及共享储能调度策略约束。共享储能的调度需满足各用户的预约或实时需求,并考虑其自身寿命和运行效率。

  • 多类型负荷需求响应约束:

     对于可中断负荷,需考虑最大中断时长和中断次数;对于可转移负荷,需考虑转移量和转移时间窗;对于可削减负荷,需考虑最大削减比例。同时,还需考虑用户舒适度或生产连续性约束,确保需求响应的实施不影响用户的核心需求。

  • 电网购售电约束:

     园区从电网购电和向电网售电的功率需在合同范围内。

  • 其他约束:

     例如,可再生能源发电出力约束、园区内变压器容量约束等。

4.3 需求响应模型

针对不同类型的负荷,采用不同的需求响应模型。

  • 价格型需求响应:

     通过实施峰谷分时电价或实时电价,引导用户主动调整用电行为。

  • 激励型需求响应:

     通过向参与需求响应的用户支付一定的激励费用,鼓励其在特定时段削减或转移负荷。

在模型中,可以引入需求响应的弹性系数,表征负荷对电价变化的敏感程度。

4.4 共享储能调度策略

共享储能的调度策略是实现经济运行的关键。可以采用分时租赁、容量租赁或基于市场交易的调度模式。在优化模型中,共享储能的调度目标是最大化其经济效益,同时满足各用户的用能需求,并平抑可再生能源波动。

5. 案例分析

本文以某典型园区为例,对所提出的含共享储能的园区多类型负荷需求响应经济运行模型进行仿真分析。园区内包含工业企业、商业综合体和居民社区,并建设有一定规模的分布式光伏发电系统和共享储能电站。

5.1 场景设置

设置以下三个对比场景:

  • 场景一:

     无共享储能,无需求响应。

  • 场景二:

     含共享储能,无需求响应。

  • 场景三:

     含共享储能,含多类型负荷需求响应。

5.2 仿真结果与分析

通过对不同场景的仿真计算,可以得到以下主要结果:

  • 运行成本对比:

     场景三的园区综合运行成本显著低于场景一和场景二。这表明共享储能和需求响应的协同作用能够有效降低园区的购电成本、储能运行维护成本以及需求响应激励成本,实现整体经济效益的最优化。

  • 负荷曲线优化:

     场景三的园区总负荷曲线表现出更好的削峰填谷效果,负荷峰谷差明显减小。共享储能通过在低谷充电、高峰放电,以及需求响应通过引导用户调整用电行为,共同平抑了负荷波动。

  • 可再生能源消纳:

     场景三中分布式光伏的自发自用比例和消纳率显著提高。共享储能有效储存了光伏发电的弃电量,并在需要时释放,减少了对电网的依赖。

  • 储能利用率:

     场景三中共享储能的充放电次数和利用率远高于场景二中独立储能的利用率,验证了共享储能模式的经济性优势。

6. 结论与展望

本文深入研究了含共享储能的园区多类型负荷需求响应经济运行策略。通过对园区多类型负荷特性、共享储能优势以及经济运行优化模型的分析,并结合案例仿真,验证了该策略的有效性和优越性。研究结果表明,将共享储能与多类型负荷需求响应有机结合,能够显著降低园区综合运行成本,提高可再生能源利用率,平抑负荷波动,为园区能源管理提供了全新的解决方案。

未来研究可以从以下几个方面展开:

  • 不确定性分析:

     进一步考虑可再生能源出力、负荷预测误差、电价波动等不确定性因素对园区经济运行的影响,并引入鲁棒优化或随机优化方法。

  • 市场机制设计:

     探索更加完善的共享储能与需求响应市场交易机制,包括各方利益分配、风险承担等。

  • 多能耦合:

     将园区内的电、热、气等多种能源系统进行耦合优化,构建更加综合的园区多能互补系统。

  • 人工智能与大数据应用:

     结合人工智能和大数据技术,提高负荷预测精度、优化需求响应策略和共享储能调度决策。

  • 政策支持与商业模式:

     研究适用于共享储能和需求响应的政策支持体系以及可持续的商业模式。

⛳️ 运行结果

图片

图片

图片

🔗 参考文献

[1] 陈东.基于多站融合电站的直流供电系统研究[D].上海电机学院,2022.

[2] 孙鑫垚.光储高渗透区域电网稳态运行调控方法的研究[D].南京邮电大学[2025-10-24].

[3] 帅轩越,马志程,王秀丽,等.基于主从博弈理论的共享储能与综合能源微网优化运行研究[J].电网技术, 2023, 47(2):679-687.DOI:10.13335/j.1000-3673.pst.2021.2191.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值