新时代主动配电网中“源-荷-储”协同优化调度的研究与应用,主动配电网中“源-荷-储”协同优化调度的研究及应用实现

主动配电网中“源-荷-储”协同优化调度研究

ID:75360712914961650

Herr方


主动配电网是指利用先进的通信、计算和控制技术实现对电网中各个节点的实时监测、通信和控制,从而实现电力系统的智能化运行。在主动配电网中,源、荷、储三者之间的协同优化调度是实现电力系统优化运行的关键。

在传统的配电网中,电力系统的供需平衡主要依靠中央调度进行控制。而在主动配电网中,由于具有分布式能源、电动汽车、储能系统等新兴电力设备的接入,电力系统变得更加分散和复杂。因此,如何协调这些不同节点之间的能源供需关系,使得系统运行效率最大化,成为了主动配电网中的重要问题。

为了实现源、荷、储协同优化调度,首先需要建立一个能够实时监测和控制各个节点的监测系统。通过这个系统,可以实时获取各个节点的电力信息,包括电流、电压、功率等数据。同时,还需要建立一个通信系统,将这些数据传输给中央控制系统。

在确定了各个节点的电力信息后,接下来就是要进行优化调度。优化调度的目标是通过合理调度各个节点的能源供给和能量消耗,使得系统的总体运行效率最大化。一种常用的优化调度方法是基于数学模型的优化算法。通过建立数学模型,将能源供给和能量消耗与系统的运行效率联系起来,然后使用优化算法求解最优解。常用的优化算法有线性规划、整数规划、遗传算法等。

同时,优化调度还需要考虑到电力系统的安全性和稳定性。例如,在供电不足或者供电过载时,需要进行相应的调整。为了实现这一点,可以采用柔性配电技术,即通过灵活调整节点的运行模式和电力配置,来适应不同的运行需求。

除了源、荷、储之间的协同优化调度,主动配电网还可以实现对电网的实时监测和检测。通过建立监测系统和传感器网络,可以实现对电力设备的状态监测和故障检测。一旦发现设备故障,可以及时采取相应的措施进行修复,从而提高电力系统的可靠性和稳定性。

总之,主动配电网中的源、荷、储协同优化调度是实现电力系统优化运行的重要环节。通过建立监测系统、通信系统和优化调度算法,可以实现对电网节点的实时监测和控制,并通过合理调度各个节点的能源供给和能量消耗,实现系统的优化运行。同时,还可以通过柔性配电技术和故障监测系统来提高电力系统的安全性和稳定性。

【相关代码,程序地址】:http://fansik.cn/712914961650.html

### 优化调度的Python实现 #### 1. 背景介绍 一体化系统是指电侧、电侧、负侧以及能装置共同参的能量管理系统。这类系统的目的是提高能利用效率,减少碳排放,并增强电力供应的安全性和可靠性。 #### 2. 数学模型构建 对于优化调度问题,通常会建立混合整数线性规划(MILP) 或者非线性的数学模型来描述各个组成部分之间的关系及其约束条件。目标函数可以是最小化成本、最大化收益或者其他特定指标。变量主要包括但不限于各时段内的发电功率、购电电量、售电电量、充电/放电功率等[^4]。 #### 3. Python库的选择 在Python环境中实施上述模型时,可以选择合适的数值计算和最优化求解工具包,比如PuLP、Pyomo或者是CVXPY来进行具体的编程工作。此外,还需要借助pandas处理数据表格,matplotlib绘制图表辅助分析结果。 #### 4. 示例代码展示 下面给出一段简化版的基于Pyomo框架下的联合经济调度程序: ```python from pyomo.environ import * import pandas as pd # 创建一个具体化的模型对象 model = ConcreteModel() # 参数设置 T = range(24) # 时间周期设为一天内每个小时 PV_output = [...] # 光伏预测输出列表 WT_output = [...] # 风力预测输出列表 load_demand = [...] # 用户需求曲线 battery_capacity = ... # 能设备容量上限 initial_soc = ... # 初始SOC状态 final_soc = ... # 终止SOC下限 charge_efficiency = ... # 充电效率系数 discharge_efficiency =... # 放电效率系数 price_buy = [...] # 各时刻电价购买价格序列 price_sell = [...] # 销售电价序列 # 定义决策变量 model.P_PV = Var(T, within=NonNegativeReals) # PV 发电功率 model.P_WT = Var(T, within=NonNegativeReals) # WT 发电功率 model.P_load = Var(T, within=NonNegativeReals) # 对应时刻满足的需求量 model.E_storage = Var(T, bounds=(0,battery_capacity)) # 当前存能量水平 model.Charge_power = Var(T, within=NonNegativeReals) # 充电功率 model.Discharge_power = Var(T, within=NonNegativeReals)# 放电功率 # 添加约束条件 def balance_rule(m,t): return m.P_PV[t]+m.P_WT[t]-m.P_load[t]==\ (m.Charge_power[t]*charge_efficiency-m.Discharge_power[t]/discharge_efficiency) model.balance_constraint = Constraint(T, rule=balance_rule) def soc_update_rule(m,t): if t==0: return initial_soc+m.Charge_power[t]*charge_efficiency-\ m.Discharge_power[t]/discharge_efficiency == m.E_storage[t] else: return m.E_storage[t-1]+m.Charge_power[t]*charge_efficiency-\ m.Discharge_power[t]/discharge_efficiency == m.E_storage[t] model.soc_update_constraints = Constraint(T,rule=soc_update_rule) def final_soc_limit(m): return m.E_storage[T[-1]] >= final_soc*m.battery_capacity model.final_soc_limits = Constraint(rule=final_soc_limit) # 设置目标函数:最小化总费用 def obj_expression(model): return sum((model.P_load[t]*price_buy[t]-\ model.Discharge_power[t]*price_sell[t])for t in T) model.objective = Objective(expr=obj_expression(model),sense=minimize) # 解决方案获取解析... solver = SolverFactory('glpk') results = solver.solve(model) print(results) df_results = pd.DataFrame({ 'Time': list(T), 'PV Output': [value(model.P_PV[i]) for i in T],
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值