Frozen Fine-Tuning(冻结微调)的冻结策略

Frozen Fine-Tuning(冻结微调) 是一种通过冻结预训练模型的大部分参数,仅更新少数特定层或模块的微调方法。其核心目标是在保留预训练知识的同时,以较低成本适配新任务。以下是其冻结策略的详细说明,涵盖原理、具体方法、实现步骤及实践建议:


一、冻结策略的核心原理

  1. 保留通用特征:预训练模型(如BERT、GPT)的底层通常学习通用特征(如词法、句法),冻结这些层可避免破坏其泛化能力。
  2. 局部适配:仅解冻与目标任务相关的模块(如顶层、分类头),使其适应特定任务的语义或模式。
  3. 降低计算成本:减少可训练参数,节省显存和训练时间,适合资源受限场景。

二、常见冻结策略及适用场景

1. 冻结底层(Freeze Lower Layers)
  • 原理:预训练模型的底层(如BERT的前几层)捕捉通用特征,高层(顶层)捕捉任务相关语义。
  • 操作
    • 冻结所有Transformer层,仅解冻最后N层。
    • 解冻分类头(分类任务必须更新)。
  • 适用场景
    • 任务与预训练任务相似(如文本分类、情感分析)。
    • 数据量中等(数千样本)。
  • 示例(以BERT为例):
    model = BertForSequenceClassification.from_pretrained("bert-base-uncased")
    
    # 冻结所有层
    for param in model.parameters():
        param.requires_grad = False
    
    # 解冻最后2层和分类头
    for layer in model.bert.encoder.layer[-2:]:
        for param in layer.parameters():
            param.requires_grad = True
    for param in model.classifier.parameters():
        param.requires_grad = True
    
2. 冻结特定模块
  • 原理:选择性地冻结与任务无关的模块(如Embedding层、注意力键/值投影)。
  • 操作
    • 按模块名称匹配参数,针对性冻结。
    • 通常保留注意力查询(Query)和输出层可训练。
  • 适用场景
### Fine-Tuning 和 Linear Probing 的定义 Fine-tuning 是一种迁移学习方法,在预训练模型的基础上调整其所有参数以适应特定下游任务的需求[^1]。相比之下,Linear probing 则是一种更轻量级的方法,仅在冻结的预训练模型之上附加一个线性分类器(通常是全连接层),并通过优化该分类器来完成目标任务的学习。 #### 主要差异 1. **可更新参数的数量** -fine-tuning 中,整个神经网络的所有权重都会被微调,这意味着大量的参数会被更新以适配新的任务需求。 - 而在 linear probing 中,只有新增加的最后一层(即线性分类器)会参与训练,其余部分保持固定不变。 2. **计算资源消耗** - 由于需要更新大量参数,fine-tuning 需求更多的 GPU/TPU 时间以及内存空间,尤其当处理大规模 Transformer 架构时更加明显. - 对于 linear probing 来说,因为只涉及少量额外参数(通常是一个矩阵乘法操作),所以它所需的硬件成本显著低于前者. 3. **泛化能力 vs 特定领域表现** - 当有足够的标注样本可用时,fine-tuned 模型往往能够展现出更好的性能因为它可以针对具体应用场景做出全局性的改变;但是这也可能导致过拟合现象如果数据规模较小的话. - 反之,line-probed 解决方案倾向于保留原始特征表示而仅仅专注于如何最好地区分类别标签因此可能不会达到最佳效果但在某些情况下却能提供更快的结果获取途径并减少灾难遗忘的风险. 4. **适用场景的选择依据** - 如果目标是构建高度定制化的解决方案并且拥有充足的数据支持那么应该优先考虑采用 full fine-tuning 方法以便充分利用这些优势获得尽可能高的准确性水平; - 然而对于那些希望快速评估某个概念或者受限于预算无法承担昂贵运算费用的研究人员来说,则可以选择执行简单的linear head evaluation作为初步筛选手段之一然后再决定是否深入探索其他可能性更大的方向上去进一步改进成果质量.[^2] ```python import torch.nn as nn class FineTuneModel(nn.Module): def __init__(self, pretrained_model): super(FineTuneModel, self).__init__() self.pretrained = pretrained_model self.classifier = nn.Linear(pretrained_model.output_dim, num_classes) def forward(self, x): features = self.pretrained(x) output = self.classifier(features) return output class LinearProbeModel(nn.Module): def __init__(self, frozen_pretrained_model): super(LinearProbeModel, self).__init__() self.frozen_base = frozen_pretrained_model.eval() # Freeze the base model parameters for param in self.frozen_base.parameters(): param.requires_grad = False self.linear_head = nn.Linear(frozen_pretrained_model.output_dim, num_classes) def forward(self, x): with torch.no_grad(): # Disable gradient computation during inference of frozen layers features = self.frozen_base(x) logits = self.linear_head(features) return logits ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值