引言
随着生成式人工智能技术的飞速发展,各类AI应用开发平台如雨后春笋般涌现。本报告将聚焦于两个具有代表性的AI智能体开发平台:Dify和扣子(Coze)。这两个平台各具特色,Dify是一个开源的大语言模型(LLM)应用开发平台,而扣子则是字节跳动推出的新一代AI大模型智能体开发平台。本文将深入分析这两个平台的功能特点、技术架构、使用流程和应用场景,为开发者提供全面的使用指南。
Dify平台概述
基本介绍
Dify是一款开源的大语言模型(LLM)应用开发平台,它融合了后端即服务(Backend as Service)和LLMOps的理念,使开发者可以快速搭建生产级的生成式AI应用[0]。Dify的核心理念是通过可声明式的YAML文件定义AI应用的各个方面,包括Prompt、上下文和插件等[4]。
Dify一词源自Define + Modify,意指定义并且持续改进你的AI应用,它是为你而做的(Do it for you)[33]。Dify由一个专业的全职团队和社区共同打造,用户对Dify的产品评价可以归结为简单、克制、迭代迅速[33]。
核心功能
Dify提供了从AI智能体构建到AI工作流编排、RAG检索、模型管理等能力,帮助开发者轻松构建和运营生成式AI原生应用[17]。其核心功能包括:
- 多模型支持:Dify支持数百个模型,用户可以选择不同的大模型基座搭建自己的GPTs和AI Agent[7]。
- 直观的Prompt编排界面:提供直观的Prompt编排界面,简化了AI应用的开发流程[33]。
- 高质量的RAG引擎:内置高质量的RAG(Retrieval Augmented Generation)引擎,支持知识库的构建和检索[33]。
- 稳健的Agent框架:提供稳健的Agent框架,支持复杂任务的自动化和智能化[33]。
- 灵活的流程编排:提供灵活的流程编排能力,使开发者能够定义复杂的业务逻辑[33]。
- 插件系统:提供五种类型插件,每一种类型对应成熟的场景解决方案,赋予开发者用无限的创意改造平台的能力[15]。
- 生产级应用支持:提供一套易用的界面和API,使开发者可以专注在创新和业务需求上,而不是重复造轮子[33]。
应用场景
Dify的应用场景非常广泛:
- 创业:快速将AI应用创意变成现实,通过引入LLM增强现有应用的能力,加速产品开发和验证过程[33]。
- 企业级应用集成:将LLM集成至已有业务,通过引入LLM增强现有应用的能力,接入Dify的RESTful API从而实现Prompt与业务代码的解耦[33]。
- 企业级LLM基础设施:一些银行和大型互联网公司正在将Dify部署为企业内的LLM网关,加速GenAI技术在企业内的推广,并实现中心化的监管[33]。
- 探索LLM的能力边界:技术爱好者可以通过Dify轻松实践Prompt工程和Agent技术,在GPTs推出以前就已经有超过60,000开发者在Dify上创建了自己的第一个应用[33]。
使用流程
Dify提供了多种方式创建应用,以下是使用Dify的基本流程:
- 安装部署:Dify支持多种部署方式,包括Docker Compose部署方案,适用于本地开发和体验[37]。
- 配置模型:在Dify的设置–模型供应商页面内添加并配置所需要的模型,Dify已支持多家主流模型[3]。
- 创建应用:可以通过三种方式在Dify的工作室内创建应用:
- 基于应用模板创建(新手推荐)
- 基于空白应用创建
- 导入已有应用[45]
- 定义应用逻辑:使用Dify提供的YAML文件定义AI应用的各个方面,包括Prompt、上下文和插件等[4]。
- 开发和测试:使用Dify提供的工具和界面开发和测试AI应用,包括使用文件上传搭建文章理解助手、使用知识库搭建智能客服机器人等[28]。
- 部署和管理:将开发好的AI应用部署到生产环境,并使用Dify提供的管理界面跟踪数据、成本和用量,持续改进应用效果[33]。
技术架构
Dify采用了模块化架构设计,使各个组件能够独立进行开发、测试和部署,同时支持水平扩展,以便应对多样化的应用场景[36]。其技术架构特点包括:
- 模块化设计:各个组件能够独立进行开发、测试和部署,保持API的一致性,确保不同触点之间能够协同工作[36]。
- 数据架构重构:Dify.AI重构了数据架构,采用了TiDB Cloud Serverless(全托管无服务器分布式数据库)作为核心数据库的统一存储层,显著提升了开发效率,降低了80%的基础设施成本[38]。
- 技术栈:Dify平台用到技术栈主要是Celery、Docker、Flask、Nginx、Postgresql、Python、React Flow、React、Redis、Weaviat等[43]。
- 源码架构:Dify源码架构清晰,有主模块调用流程图和各模块的实现细节,包括接口暴露实现、核心模块等[49]。
扣子(Coze)平台概述
基本介绍
扣子是新一代AI大模型智能体开发平台,整合了插件、长短期记忆、工作流、卡片等丰富能力,能够帮助用户低门槛、快速搭建个性化或具备商业价值的智能体,并发布到豆包、飞书等平台[53]。扣子是字节跳动推出的一站式AI开发平台,支持用户在30秒内无代码生成AI机器人[55]。
扣子有两个版本,一个是国内版本,一个是国际版本,其中,国内版本使用的大模型是云雀[55]。扣子平台的核心服务是为用户提供一个快速开发AI应用的平台,用于解决多种多样的AI应用场景[61]。
核心功能
扣子平台的核心功能包括:
- 零代码/低代码开发:提供可视化界面,拖拽式操作,主流大语言模型即连即用,开发效率瞬间提升[53]。
- 便捷开发提示词/超多大模型:提供丰富的提示词模板和多种大模型供用户选择使用[53]。
- 零延迟调试:内置专业调试环境,运行效果实时预览,搭配详细日志分析,精准定位问题根源,为AI开发提供可靠保障[53]。
- 一键发布:点击一下,全平台上线!APP、网页、小程序统统搞定[53]。
- 插件系统:提供丰富的插件生态,支持联网搜索、图片理解、读链接、生成图片、思维导图等需求[53]。
- 工作流功能:扣子的工作流功能可以用来处理逻辑复杂,且有较高稳定性要求的任务流,提供了大量灵活可组合的节点,包括大语言模型LLM、自定义代码、判断逻辑等[24]。
- 长短期记忆:通过长期记忆,让用户每次交互都更精准,复访率超60%[53]。
应用场景
扣子平台的应用场景包括:
- 智能客服助手:扣子提供了智能客服助手模板,该模板可服务于多行业的客服问答场景,帮助企业快速建立产品智能客服体系,提升用户体验和客服人效[53]。
- 内容创作:扣子提供了文章转播客等模板,可以一键将文章转化成生动的中文音频双人对谈播客[53]。
- 虚拟角色陪聊:扣子提供了角色陪伴模板,服务于2C虚拟角色、陪聊开发场景,满足开发者快速打造带亲密度判断和拆句的虚拟陪聊需求[53]。
- 智能助教:扣子提供了智能助教模板,可助力老师轻松备课与高效批阅作业,减轻教学压力[53]。
- 企业应用:扣子平台的无代码开发、丰富的功能和可视化流程,使得产品搭建和迭代非常高效,适用于数据分析和处理等多种企业应用场景[53]。
使用流程
使用扣子平台创建和发布AI智能体的流程包括:
- 登录平台:登陆Coze国内官网:Coze,点击"创建Bot"按钮[57]。
- 填写Bot信息:填写Bot的基本信息,包括Bot名称、描述等[54]。
- 编写提示词:编写智能体的提示词,定义智能体的行为和能力[54]。
- 添加技能和知识库:添加智能体的技能和知识库,增强智能体的能力和知识储备[54]。
- 设置开场白:设置智能体的开场白,定义智能体与用户交互的初始对话[54]。
- 预览调试:预览和调试智能体,确保智能体按照预期工作[54]。
- 发布到平台:将智能体发布到平台,供用户使用[54]。
- 数据分析和处理:实时提取用户在平台上的数据,进行分析和处理,优化智能体的性能和用户体验[53]。
技术特点
扣子平台的技术特点包括:
- 模块化重构AI开发流程:将代码接口转化为可视化节点,以无代码拖拽交互实现复杂业务逻辑,使产品迭代效率大大提升[53]。
- 插件生态系统:扣子提供了大量灵活可组合的节点,包括大语言模型LLM、自定义代码、判断逻辑等,支持多种复杂任务的自动化处理[24]。
- 长短期记忆机制:通过长期记忆,让用户每次交互都更精准,复访率超60%,提升用户体验和用户粘性[53]。
- 多端发布能力:支持将智能体发布到多个平台,包括APP、网页、小程序等,扩大智能体的覆盖范围和应用场景[53]。
- 专业调试环境:内置专业调试环境,运行效果实时预览,搭配详细日志分析,精准定位问题根源,为AI开发提供可靠保障[53]。
Dify与扣子的对比分析
开发模式对比
特性 | Dify | 扣子(Coze) |
---|---|---|
开发方式 | 基于YAML文件的声明式开发 | 可视化界面,拖拽式操作 |
编程要求 | 需要一定的编程基础 | 无需编程基础,零代码/低代码 |
模型支持 | 支持数百个模型,用户可选择不同的大模型基座 | 国内版本使用云雀大模型,国际版本使用其他模型 |
部署方式 | 多种部署方式,包括Docker Compose | 云平台部署,支持一键发布到多个平台 |
扩展性 | 提供插件系统,支持五种类型插件 | 提供插件生态系统,支持多种复杂任务的自动化处理 |
技术架构对比
特性 | Dify | 扣子(Coze) |
---|---|---|
架构设计 | 模块化设计,组件独立开发、测试和部署 | 模块化重构AI开发流程,将代码接口转化为可视化节点 |
数据架构 | 采用TiDB Cloud Serverless作为核心数据库的统一存储层 | 未明确说明,但提供了强大的数据分析和处理能力 |
技术栈 | Celery、Docker、Flask、Nginx、Postgresql、Python、React Flow、React、Redis、Weaviat等 | 未明确说明,但提供了可视化界面和专业调试环境 |
扩展能力 | 提供插件系统,支持多种类型的插件开发 | 提供插件生态系统,支持多种复杂任务的自动化处理 |
使用体验对比
特性 | Dify | 扣子(Coze) |
---|---|---|
学习曲线 | 需要一定的学习成本,特别是对于没有编程基础的用户 | 学习曲线平缓,可视化界面和拖拽式操作降低了使用门槛 |
开发效率 | 提供了一套易用的界面和API,但需要一定的编程基础 | 提供了可视化界面,拖拽式操作,开发效率高 |
调试能力 | 提供了详细的日志分析和监测功能 | 内置专业调试环境,运行效果实时预览,调试效率高 |
发布和部署 | 提供了多种部署方式,但需要一定的技术知识 | 一键发布到多个平台,简化了部署过程 |
用户反馈 | 提供了详细的使用统计数据和用量监测 | 实时提取用户数据,进行分析和处理,优化智能体性能 |
应用场景对比
特性 | Dify | 扣子(Coze) |
---|---|---|
适用场景 | 适用于需要高度定制化和灵活性的应用,特别是对于有编程基础的开发者 | 适用于快速开发和部署的场景,特别是对于没有编程基础的用户 |
行业应用 | 金融、互联网、创业公司等 | 多行业客服、内容创作、教育、虚拟角色等 |
业务类型 | 复杂任务自动化、多代理协作等 | 智能客服、内容创作、教育辅助、虚拟陪聊等 |
Dify与扣子的整合使用方案
场景一:企业级AI应用开发
方案概述:
结合Dify的开源特性和扣子的零代码开发能力,为企业提供灵活且高效的AI应用开发解决方案。
实施步骤:
- 使用Dify作为底层平台,提供强大的模型支持和灵活的扩展能力
- 利用扣子的可视化界面和拖拽式操作,降低企业内部非技术人员的使用门槛
- 通过Dify的插件系统和扣子的插件生态系统,实现功能的灵活扩展
- 利用Dify的监测功能和扣子的数据分析能力,持续优化AI应用的性能和用户体验
优势:
- 开源特性保障数据安全和灵活性
- 可视化界面降低使用门槛,提高开发效率
- 强大的插件系统支持功能的灵活扩展
- 全面的监测和数据分析能力,支持持续优化
场景二:教育行业AI应用开发
方案概述:
结合Dify的技术深度和扣子的易用性,为教育行业提供高效且易用的AI应用开发解决方案。
实施步骤:
- 使用扣子的可视化界面和拖拽式操作,帮助教育工作者快速创建智能助教应用
- 利用Dify的强大模型支持和灵活的扩展能力,为智能助教应用提供更强大的功能
- 通过Dify的知识库功能和扣子的长短期记忆机制,提升智能助教的应用效果
- 利用Dify的监测功能和扣子的数据分析能力,持续优化智能助教的性能和用户体验
优势:
- 可视化界面降低使用门槛,提高开发效率
- 强大的模型支持和知识库功能,提升智能助教的应用效果
- 长短期记忆机制,提升用户体验和用户粘性
- 全面的监测和数据分析能力,支持持续优化
场景三:创业团队AI应用开发
方案概述:
结合Dify的开源特性和扣子的快速开发能力,为创业团队提供高效且灵活的AI应用开发解决方案。
实施步骤:
- 使用扣子的快速开发能力,帮助创业团队快速验证产品创意
- 利用Dify的开源特性和灵活的扩展能力,支持创业团队的长期发展
- 通过Dify的插件系统和扣子的插件生态系统,实现功能的灵活扩展
- 利用Dify的监测功能和扣子的数据分析能力,持续优化AI应用的性能和用户体验
优势:
- 快速开发能力,加速产品迭代和验证
- 开源特性保障数据安全和灵活性
- 强大的插件系统支持功能的灵活扩展
- 全面的监测和数据分析能力,支持持续优化
结论与建议
总结
Dify和扣子(Coze)是两款功能强大的AI智能体开发平台,各有其独特的优势和适用场景。Dify作为一个开源的大语言模型(LLM)应用开发平台,提供了强大的模型支持、灵活的扩展能力和全面的监测功能,特别适合有技术背景的开发者和需要高度定制化的企业应用。扣子作为一个零代码/低代码的AI大模型智能体开发平台,提供了可视化界面、拖拽式操作和一键发布能力,降低了AI应用开发的门槛,特别适合快速开发和部署的场景,以及没有编程基础的用户。
建议
- 选择合适的平台:根据项目需求、团队能力和应用场景,选择合适的平台。对于需要高度定制化和灵活性的应用,Dify是更好的选择;对于需要快速开发和部署的应用,扣子是更好的选择。
- 整合使用:对于复杂项目,可以考虑将Dify和扣子结合起来使用,充分发挥两者的优点。例如,使用Dify作为底层平台,提供强大的模型支持和灵活的扩展能力,同时利用扣子的可视化界面和拖拽式操作,降低使用门槛。
- 持续学习和优化:AI技术发展迅速,需要持续学习和优化。定期关注Dify和扣子的更新和新功能,不断优化AI应用的性能和用户体验。
- 数据安全和合规:在使用AI平台时,要注意数据安全和合规问题。特别是对于涉及用户隐私和敏感信息的应用,需要确保数据的安全性和合规性。
参考资料
[0] 欢迎使用Dify. https://docs.dify.ai/zh-hans.
[3] 一文入门智能体:dify 超快速构建AI agent - 知乎专栏. https://zhuanlan.zhihu.com/p/25771359587.
[4] Dify.AI: 一个简单易用的开源LLMOps 平台. - Gitee. https://gitee.com/dify_ai.
[7] Dify 发布AI Agent 能力:基于不同LLM 构建GPTs 和Assistants. https://hub.baai.ac.cn/view/34686.
[15] 功能简介 - Dify. https://docs.dify.ai/zh-hans/plugins/introduction.
[17] 一文入门智能体:dify 超快速构建AI agent - 知乎专栏. https://zhuanlan.zhihu.com/p/25771359587.
[24] 探秘AI Agent 之Coze 智能体:从简介到搭建全攻略(4/30) - 腾讯云. https://cloud.tencent.com/developer/article/2478559.
[28] 中级| Dify. https://docs.dify.ai/zh-hans/workshop/intermediate.
[33] 快速开始 | Dify. https://docs.dify.ai/zh-hans/plugins/quick-start.
[36] Dify发布新架构,提升灵活性与扩展性 - 飞书文档. https://docs.feishu.cn/v/wiki/ZkZvw21nwiSFiakY4RicpfeCnHq/a1.
[37] Dify 架构解析与私有化部署 - 53AI. https://www.53ai.com/news/dify/2025031891034.html.
[38] Dify 基于TiDB 的数据架构重构实践. https://tidb.net/blog/0e7fae7c.
[43] Dify技术架构. https://zhuanlan.zhihu.com/p/30095573723.
[45] Dify使用教程(创建应用). https://zhuanlan.zhihu.com/p/25733590410.
[49] Dify代码浅析. https://zhuanlan.zhihu.com/p/11487790956.
[53] 文档- 扣子. https://www.coze.cn/open/docs/guides/welcome.
[54] 使用扣子Coze搭建AI智能体,看这一篇就够了(新手必看) - 知乎专栏. https://zhuanlan.zhihu.com/p/695645718.
[55] 4万字教程-COZE/扣子与智能体入门 - 飞书文档. https://docs.feishu.cn/article/wiki/ZGoFwzb0ai28mdkKqLjcqE2hnbU.
[57] 使用扣子Coze搭建AI智能体,看这一篇就够了(新手必看). https://blog.csdn.net/wjsz2070/article/details/138382327.
[61] 深度剖析字节Coze/扣子 - 知乎专栏. https://zhuanlan.zhihu.com/p/712046591.