Softmax函数详解与推导

原文:https://www.cnblogs.com/zongfa/p/8971213.html Softmax函数详解与推导 一、softmax函数 softmax用于多分类过程中,它将多个神经元的输出,映射到(0,1)区间内,可以看成概率来理解,从而来进行多分类! 假设我们有一个数...

2019-05-08 10:42:27

阅读数 48

评论数 0

特征值与特征向量的意义

转载地址:http://blog.csdn.net/sunshine_in_moon/article/details/45749691 从定义出发,Ax=cx:A为矩阵,c为特征值,x为特征向量。  矩阵A乘以x表示,对向量x进行一次转换(旋转或拉伸)(是一种线性转换),而该转换的效果为常数c...

2018-09-10 17:49:34

阅读数 64

评论数 0

逆矩阵(inverse matrix)的概念及其意义

逆矩阵(inverse matrix)的概念及其意义 2015年09月17日 00:09:10 阅读数:21838 标签: 逆矩阵为何需要逆矩阵逆矩阵应用逆矩阵实例逆矩阵与倒数 更多   版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/ver...

2018-09-10 17:47:21

阅读数 4214

评论数 2

如何通俗地解释欧拉公式(e^πi+1=0)

如何通俗地解释欧拉公式(e^πi+1=0)?微信公众号:matongxue314欧拉公式将指数函数的定义域扩大到了复数域,建立和三角函数和指数函数的关系,被誉为“数学中的天桥”。形式简单,结果惊人,欧拉本人都把这个公式刻在皇家科学院的大门上,看来必须好好推敲一番。1 复数在进入欧拉公式之前,我们先...

2018-07-06 23:04:45

阅读数 4941

评论数 0

欧拉公式与泰勒公式

2.1 欧拉公式与泰勒公式关于泰勒公式可以参看这篇详尽的科普文章:如何通俗地解释泰勒公式? 。欧拉最早是通过泰勒公式观察出欧拉公式的:将  代入  可得:那欧拉公式怎么可以有一个直观的理解呢?...

2018-07-06 23:03:13

阅读数 504

评论数 0

龙格-库塔(Runge-Kutta)方法数学原理及实现

参考:https://blog.csdn.net/u013007900/article/details/45922331龙格-库塔(Runge-Kutta)方法龙格-库塔(Runge-Kutta)方法是一种在工程上应用广泛的高精度单步算法。由于此算法精度高,采取措施对误差进行抑制,所以其实现原理也...

2018-05-03 00:13:48

阅读数 5731

评论数 0

极限导数练习题

f(x)=(sinx)^2/x,当x趋近于0时,f(x)的极限是0f(x)=sin(x^2)/x,当x趋近于0时,f(x)的极限是0f(x)=sin(2x)/x,当x趋近于0时,f(x)的极限是2

2018-04-21 20:47:49

阅读数 169

评论数 0

python 最速曲线

关于最速曲线的介绍有 http://zhidao.baidu.com/s/daily/2014-04-21/1403015178.html内容比较丰富,还比较好玩最速曲线公式理论解很久之前就已经有了,如下参考:https://blog.csdn.net/WhoisPo/article/detail...

2018-04-17 22:59:14

阅读数 293

评论数 0

用Python实现最速下降法求极值

原文:https://blog.csdn.net/u012705410/article/details/47254437用Python实现最速下降法求极值对于一个多元函数f(x)=f(x1,x2,⋯,xn)f(x)=f(x1,x2,⋯,xn),用最速下降法(又称梯度下降法)求其极小值的迭代格式为 ...

2018-04-17 15:58:03

阅读数 266

评论数 0

python 之pulp 线性规划介绍及举例

原文:https://www.cnblogs.com/shizhenqiang/p/8274806.html安装:conda install pulppulp http://pythonhosted.org/PuLP/main/basic_python_coding.html供水问题1问题供水公司...

2018-04-15 22:49:40

阅读数 665

评论数 1

线性规划,增光矩阵

参考:https://baike.baidu.com/item/%E5%A2%9E%E5%B9%BF%E7%9F%A9%E9%98%B5/7254773?fr=aladdin增广矩阵增广矩阵(又称扩增矩阵)就是在系数矩阵的右边添上一列,这一列是线性方程组的等号右边的值。线性方程组其系数构成一个矩阵...

2018-04-15 22:26:07

阅读数 127

评论数 0

凸函数性质习题

试题专页1题文(考试题提前练->戳这)凸函数的性质定理为:如果函数f(x)在区间D上是凸函数,则对于区间D内的任意x1,x2,…,xn,有f(x1)+f(x2)+…+f(xn)n≤f(x1+x2+…xnn),已知函数y=sinx在区间(0,π)上是凸函数,则在△ABC中,si...

2018-04-09 11:51:23

阅读数 1337

评论数 0

证明sinx/x的极限等于1(x趋向于0)

洛比达法则,上下都对x求导,得1/cosx=1

2018-04-07 23:28:59

阅读数 12035

评论数 0

逻辑回归原理(python代码实现)

原文: https://blog.csdn.net/csqazwsxedc/article/details/69690655Logistic Regression Classifier逻辑回归主要思想就是用最大似然概率方法构建出方程,为最大化方程,利用牛顿梯度上升求解方程参数。优点:计算代价不高,...

2018-03-30 18:04:30

阅读数 97

评论数 0

线性回归最小二乘法和梯度下降法-详细

 原文: https://blog.csdn.net/y990041769/article/details/69567838问题描述首先我们定义问题,线性回归要解决的问题就是根据给出的数据学习出一个线性模型。 例如我们最常说的身高和体重的关系,以及房屋面积和房价的关系,这里给出一个瑞典汽车保险数据...

2018-03-30 17:49:01

阅读数 100

评论数 0

极大似然估计

极大似然估计,通俗理解来说,就是利用已知的样本结果信息,反推最具有可能(最大概率)导致这些样本结果出现的模型参数值!换句话说,极大似然估计提供了一种给定观察数据来评估模型参数的方法,即:“模型已定,参数未知”。可能有小伙伴就要说了,还是有点抽象呀。我们这样想,一当模型满足某个分布,它的参数值我通过...

2018-03-28 18:13:16

阅读数 75

评论数 0

海森矩阵及其应用

海森矩阵及其应用 转载 2017年04月20日 09:59:48 标签:梯度下降算法 /...

2018-03-14 22:48:17

阅读数 168

评论数 0

SymPy解方程

SymPy解方程

2017-11-09 16:35:11

阅读数 862

评论数 0

自然对数e的来历

自然对数e的来历

2017-11-07 22:57:27

阅读数 607

评论数 0

对数和指数

对数和指数

2017-11-05 18:58:12

阅读数 918

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭