龙格-库塔(Runge-Kutta)方法
龙格-库塔(Runge-Kutta)方法是一种在工程上应用广泛的高精度单步算法。由于此算法精度高,采取措施对误差进行抑制,所以其实现原理也较复杂。该算法是构建在数学支持的基础之上的。
对于一阶精度的欧拉公式有:
其中 hh为步长,则 yi+1yi+1的表达式与 y(xi+1)y(xi+1)的Taylor展开式的前两项完全相同,即 局部截断误差为 O(h2)O(h2)。
当用点 xixi处的斜率近似值 k1k1与右端点 xi+1xi+1处的斜率 k2k2的算术平均值作为平均斜率 k∗k∗的近似值,那么就会得到二阶精度的改进欧拉公式:
其中 k1=f(xi,yi)k1=f(xi,yi) , k2=f(xi+h,yi+hk1)k2=f(xi+h,yi+hk1)
依次类推,如果在区间 [xi,xi+1][xi,xi+1]内多预估几个点上的斜率值 k1,k2,…,kmk1,k2,…,km,并用他们的加权平均数作为平均斜率 k∗k∗的近似值,显然能够构造出具有很高精度的高阶计数公式。
上述两组公式在形式删过的共同点:都是用 f(x,y)f(x,y)在某些点上值得线性组合得出 y(xi+1)y(xi+1)的近似值 yi+1yi+1,且增加计算的次数,可以提高截断误差的阶,他们的误差估计可以用 f(x,y)f(x,y)在 xixi处的Taylor展开来估计。
于是可考虑用函数f(x,y)f(x,y)在若干点上的函数值的线性组合老构造金斯公式,构造时要求近似公式在f(xi,yi)f(xi,yi)处的Taylor展开式与解y(x)y(x)在xixi处的Taylor展开式的前面几项重合,从而使金斯公式达到所需要的阶数。既避免求高阶导数,又提高了计算方法精度的阶数。或者说,在[xi,xi+1][xi,xi+1]这一步内计算多个点的斜率值,若够将其进行加权平均作为平均斜率,则可构造出更高精度的计算格式,这就是龙格-库塔(Runge-Kutta)方法。
一般的龙格-库塔法的形式为
称为P阶龙格-库塔方法。
其中 ai,bij,cjai,bij,cj为待定参数,要求上式 yi+1yi+1在点 (xi,yi)(xi,yi)处作Taylor展开,通过相同项的系数确定参数。
当然,经典的龙格-库塔方法是四阶的。也就是在[xi,xi+1][xi,xi+1]上用四个点处的斜率加权平均作为平均斜率k∗k∗的近似值,构成一系列四阶龙格-库塔公式。具有四阶精度,即局部截断误差是O(h5)O(h5)。
下面介绍最常用的一种四阶龙格-库塔方法。
设
这里 K1,K2,K3,K4K1,K2,K3,K4为四个不同点上的函数值,分别设其为
其中 c1,c2,c3,c4,a2,a3,a4,b21,b31,b32,b41,b42,b43c1,c2,c3,c4,a2,a3,a4,b21,b31,b32,b41,b42,b43均为待定系数。
把 K2,K3,K4K2,K3,K4分别在 xixi点占城h的幂级数,带入线性组合式中,将得到的公式与 y(xi+1)y(xi+1)在 xixi点上的泰勒展开式比较,使其两式右端知道 h4h4的系数相等,经过较复杂的解方程过程便可得到关于 ai,bij,cjai,bij,cj的一组特解。
带入之后得到
龙格-库塔方法的推导基于Taylor展开方法,因而它要求所求的解具有较好的光滑性。如果解的光滑性差,那么,使用四阶龙格-库塔方法求得的数值解,其精度可能反而不如改进的欧拉方法。在实际计算时,应正对问题的具体特点选择适合的算法。对于光滑性不太好的解,最好采用低阶算法而将步长hh取小。
龙格-库塔法的C语言实现
#include "stdio.h"
#include "stdlib.h"
void RKT(t,y,n,h,k,z)
int n; /*微分方程组中方程的个数,也是未知函数的个数*/
int k; /*积分的步数(包括起始点这一步)*/
double t; /*积分的起始点t0*/
double h; /*积分的步长*/
double y[]; /*存放n个未知函数在起始点t处的函数值,返回时,其初值在二维数组z的第零列中*/
double z[]; /*二维数组,体积为n x k.返回k个积分点上的n个未知函数值*/
{
extern void Func(); /*声明要求解的微分方程组*/
int i,j,l;
double a[4],*b,*d;
b=malloc(n*sizeof(double)); /*分配存储空间*/
if(b == NULL)
{
printf("内存分配失败\n");
exit(1);
}
d=malloc(n*sizeof(double)); /*分配存储空间*/
if(d == NULL)
{
printf("内存分配失败\n");
exit(1);
}
/*后面应用RK4公式中用到的系数*/
a[0]=h/2.0;
a[1]=h/2.0;
a[2]=h;
a[3]=h;
for(i=0; i<=n-1; i++)
z[i*k]=y[i]; /*将初值赋给数组z的相应位置*/
for(l=1; l<=k-1; l++)
{
Func(y,d);
for (i=0; i<=n-1; i++)
b[i]=y[i];
for (j=0; j<=2; j++)
{
for (i=0; i<=n-1; i++)
{
y[i]=z[i*k+l-1]+a[j]*d[i];
b[i]=b[i]+a[j+1]*d[i]/3.0;
}
Func(y,d);
}
for(i=0; i<=n-1; i++)
y[i]=b[i]+h*d[i]/6.0;
for(i=0; i<=n-1; i++)
z[i*k+l]=y[i];
t=t+h;
}
free(b); /*释放存储空间*/
free(d); /*释放存储空间*/
return;
}
main()
{
int i,j;
double t,h,y[3],z[3][11];
y[0]=-1.0;
y[1]=0.0;
y[2]=1.0;
t=0.0;
h=0.01;
RKT(t,y,3,h,11,z);
printf("\n");
for (i=0; i<=10; i++) /*打印输出结果*/
{
t=i*h;
printf("t=%5.2f\t ",t);
for (j=0; j<=2; j++)
printf("y(%d)=%e ",j,z[j][i]);
printf("\n");
}
}
void Func(y,d)
double y[],d[];
{
d[0]=y[1]; /*y0'=y1*/
d[1]=-y[0]; /*y1'=y0*/
d[2]=-y[2]; /*y2'=y2*/
return;
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
ps:如果有时间的话,可能会回过头来加一分解方程的推到吧…