欧拉公式与泰勒公式

2.1 欧拉公式与泰勒公式

关于泰勒公式可以参看这篇详尽的科普文章:

如何通俗地解释泰勒公式? 。

欧拉最早是通过泰勒公式观察出欧拉公式的:

e^ x=1+x+\frac{1}{2!}x^2+\frac{1}{3!}x^3+\cdots sin(x)=x-\frac{1}{3!}x^3+\frac{1}{5!}x^5+\cdots cos(x)=1-\frac{1}{2!}x^2+\frac{1}{4!}x^4+\cdots

将 x=i\theta 代入 e 可得:

\begin{align}  e^{i\theta } &  = 1 + i\theta + \frac{(i\theta )^2}{2!} + \frac{(i\theta )^3}{3!} + \frac{(i\theta )^4}{4!} + \frac{(i\theta )^5}{5!} + \frac{(i\theta )^6}{6!} + \frac{(i\theta )^7}{7!} + \frac{(i\theta )^8}{8!} + \cdots \\ &  = 1 + i\theta - \frac{\theta ^2}{2!} - \frac{i\theta ^3}{3!} + \frac{\theta ^4}{4!} + \frac{i\theta ^5}{5!} - \frac{\theta ^6}{6!} - \frac{i\theta ^7}{7!} + \frac{\theta ^8}{8!} + \cdots \\ &  = \left( 1 - \frac{\theta ^2}{2!} + \frac{\theta ^4}{4!} - \frac{\theta ^6}{6!} + \frac{\theta ^8}{8!} - \cdots \right) + i\left(\theta -\frac{\theta ^3}{3!} + \frac{\theta ^5}{5!} - \frac{\theta ^7}{7!} + \cdots \right) \\ &  = \cos \theta + i\sin \theta \end{align}

那欧拉公式怎么可以有一个直观的理解呢?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI算法网奇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值