线性规划,增光矩阵

参考:https://baike.baidu.com/item/%E5%A2%9E%E5%B9%BF%E7%9F%A9%E9%98%B5/7254773?fr=aladdin

增广矩阵

增广矩阵(又称扩增矩阵)就是在系数矩阵的右边添上一列,这一列是线性方程组等号右边的值。

线性方程组
其系数构成一个矩阵:
称为该方程的 系数矩阵,而矩阵B:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
称为该方程组的增广矩阵。线性方程组与其增广矩阵一一对应。
特别地,若
   
,方程组变为:
称为 齐次线性方程组。齐次线性方程组与其系数矩阵一一对应。  [1]  

应用

编辑
增广矩阵通常用于判断矩阵的解的情况:
   
时,方程组无解;
   
时,方程组有唯一解;
   
时,方程组无穷解;
 
不可能,因为增广 矩阵的秩大于等于系数矩阵的秩。  [2]  

分类

编辑
 
 
 
 
 
 
 
 
 
 
 
增广 矩阵为:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
【补充】上面说的只是在解 线性方程组的时候,对 系数矩阵进行的一个增广矩阵,切勿以为增广矩阵只是右端添加一列,其实是在原矩阵的右端添加一个矩阵,而线性方程组的右端恰好是一个列数为1的矩阵。
线性规划例题:
(1)求
   
的最大值。
约束条件:
(2)绘制可行解域:
(3)画目标函数图:
令目标函数值为零,可得到斜率,根据斜率做一过原点的直线。(如果可行解域在第一象限,且目标函数等值线斜率为负)若给出问题是求最大值,把目标函数等值线平行移动到与可行解域最后相交的点,这点就是问题的最优解;若给出问题是求最小值,把目标函数等值线平行移动到与可行解域最先相交的点,这点即为问题的最优解。
(4)判断解的形式,得出结论。
本题有唯一的最优解。
解法:
最优解是由两根直线所确定的最后的交点;
解由此两根直线相应方程所组成的方程组,得到问题的精确最优解;
将最优解代入目标函数,得最优值。
将最优解代入目标函数,得最优值:


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI算法网奇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值