参考:https://baike.baidu.com/item/%E5%A2%9E%E5%B9%BF%E7%9F%A9%E9%98%B5/7254773?fr=aladdin
增广矩阵
增广矩阵(又称扩增矩阵)就是在系数矩阵的右边添上一列,这一列是线性方程组的等号右边的值。
线性方程组
其系数构成一个矩阵:
称为该方程的
系数矩阵,而矩阵B:
称为该方程组的增广矩阵。线性方程组与其增广矩阵一一对应。
特别地,若
,方程组变为:
应用
编辑
增广矩阵通常用于判断矩阵的解的情况:
当
时,方程组无解;
当
时,方程组有唯一解;
当
时,方程组无穷解;
分类
编辑
系数矩阵为:
增广
矩阵为:
线性规划例题:
(1)求
的最大值。
约束条件:
(2)绘制可行解域:
(3)画目标函数图:
令目标函数值为零,可得到斜率,根据斜率做一过原点的直线。(如果可行解域在第一象限,且目标函数等值线斜率为负)若给出问题是求最大值,把目标函数等值线平行移动到与可行解域最后相交的点,这点就是问题的最优解;若给出问题是求最小值,把目标函数等值线平行移动到与可行解域最先相交的点,这点即为问题的最优解。
(4)判断解的形式,得出结论。
本题有唯一的最优解。
解法:
最优解是由两根直线所确定的最后的交点;
解由此两根直线相应方程所组成的方程组,得到问题的精确最优解;
将最优解代入目标函数,得最优值。
将最优解代入目标函数,得最优值: