线性规划,增光矩阵

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/jacke121/article/details/79954388

参考:https://baike.baidu.com/item/%E5%A2%9E%E5%B9%BF%E7%9F%A9%E9%98%B5/7254773?fr=aladdin

增广矩阵

增广矩阵(又称扩增矩阵)就是在系数矩阵的右边添上一列,这一列是线性方程组等号右边的值。

线性方程组
其系数构成一个矩阵:
称为该方程的系数矩阵,而矩阵B:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
称为该方程组的增广矩阵。线性方程组与其增广矩阵一一对应。
特别地,若
  
,方程组变为:
称为齐次线性方程组。齐次线性方程组与其系数矩阵一一对应。 [1] 

应用

编辑
增广矩阵通常用于判断矩阵的解的情况:
  
时,方程组无解;
  
时,方程组有唯一解;
  
时,方程组无穷解;
 
不可能,因为增广矩阵的秩大于等于系数矩阵的秩。 [2] 

分类

编辑
 
 
 
 
 
 
 
 
 
 
 
增广矩阵为:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
【补充】上面说的只是在解线性方程组的时候,对系数矩阵进行的一个增广矩阵,切勿以为增广矩阵只是右端添加一列,其实是在原矩阵的右端添加一个矩阵,而线性方程组的右端恰好是一个列数为1的矩阵。
线性规划例题:
(1)求
  
的最大值。
约束条件:
(2)绘制可行解域:
(3)画目标函数图:
令目标函数值为零,可得到斜率,根据斜率做一过原点的直线。(如果可行解域在第一象限,且目标函数等值线斜率为负)若给出问题是求最大值,把目标函数等值线平行移动到与可行解域最后相交的点,这点就是问题的最优解;若给出问题是求最小值,把目标函数等值线平行移动到与可行解域最先相交的点,这点即为问题的最优解。
(4)判断解的形式,得出结论。
本题有唯一的最优解。
解法:
最优解是由两根直线所确定的最后的交点;
解由此两根直线相应方程所组成的方程组,得到问题的精确最优解;
将最优解代入目标函数,得最优值。
将最优解代入目标函数,得最优值:


阅读更多
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页