deep-high-resolution-net.pytorch

本文介绍了一个名为'deep-high-resolution-net.pytorch'的项目,该实现聚焦于深度学习中的高分辨率网络,在PyTorch框架下运行,平均耗时约100多毫秒。
摘要由CSDN通过智能技术生成

 

deep-high-resolution-net.pytorch

1070 100多ms

 


from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import argparse
import os
import pprint

import cv2
import torch
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
from easydict import EasyDict as edict
import _init_paths
from config import cfg
from config import update_config
from core.loss import JointsMSELoss
from core.function import validate
from utils.utils import create_logger

from utils.transforms import flip_back
import dataset
import models


def parse_args():
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI算法网奇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值