mxnet 和pytorch比较

本文探讨了mxnet和pytorch在构建神经网络时的不同之处,mxnet采用链式结构,而pytorch则支持列表结构。在mxnet中,symbol的特征维度打印成为一个问题,且设计网络时不需要指定输入的channel数,而在pytorch中则必须明确输入通道数。
摘要由CSDN通过智能技术生成

mxnet网络是链式结构,pytorch可以是列表结构

引发的问题:mxnet symbol如何打印特征维度?

 

mxnet设计网络是,不用输入网络输入channel,

pytorch需要输入通道数。

 

mxnet:

  num_classes = config.emb_size
    bn_mom = config.bn_mom
    workspace = config.workspace
    data = mx.symbol.Variable(name="data")  # 224
    data = data - 127.5
    data = data * 0.0078125
    fc_type = config.net_output
    bf = int(32 * config.net_multiplier)
    if config.net_input == 0:
        conv_1 = Conv(data, num_filter=bf, kernel=(3, 3), pad=(1, 1), stride=(2, 2), name="conv_1")  # 224/112
    else:
        conv_1 = Conv(data, num_filter=bf, kernel=
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI算法网奇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值