paddleocr 训练自己的数据,详细笔记

本文详细介绍了如何使用PaddleOCR进行深度学习 OCR 的训练,包括数据集制作、字库修改、训练过程、数据增强、模型优化及模型导出等步骤,同时分享了作者在训练过程中遇到的问题及解决方案。
摘要由CSDN通过智能技术生成

目录

算法原理

第一步 制作数据集

 数据标注工具:

可视化标注:

一定要制作数据集:

xml格式转paddleocr格式

第二部 改字库

修改分辨率

训练

数据集加载方式

DecodeImage修改去掉

数据增强

EastRandomCropData

参数文件:

2.4版本预训练:

修改模型保存间隔

训练记录:

优化器:

报错解决

通用验证:

 识别推理,我自己稍微调整了一下

导出模型

导出onnx

自己的优化心得笔记

ocr检测标签转换


算法原理

标注是用关键点标注的,

可视化标注:

paddlecor可视化标注_AI视觉网奇的博客-CSDN博客

网络是用分割处理的,证据:

db_postprocess.py中

类:

class DBPostProcess(object):

函数: 

    def boxes_from_bitmap(self, pred, _bitmap, dest_width, dest_height):
        '''
        _bitmap: single map with shape (1, H, W),
                whose values are binarized as {0, 1}
        '''

        bitmap =
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI算法网奇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值